を得たことは、df
の第一および第二列あなたが位置によって選択のためのiloc
を必要とするようだ:
finaldata.columns = pd.MultiIndex.from_arrays([df.iloc[0], df.iloc[1], finaldata.columns])
サンプル:
df = pd.DataFrame({'a':[2,3],
'b':[5,6],
'c':[1,5],
'd':[4,5],
'e':[1,5],
'f':[8,9]})
print (df)
a b c d e f
0 2 5 1 4 1 8
1 3 6 5 5 5 9
finaldata = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
print (finaldata)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
names = ['first','second','third']
finaldata.columns = pd.MultiIndex.from_arrays([df.iloc[0],
df.iloc[1],
finaldata.columns], names=names)
print (finaldata)
first 2 5 1 4 1 8
second 3 6 5 5 5 9
third A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
numpy.concatenate
のもう一つの解決策:
a = np.concatenate([df.values, np.array(finaldata.columns).reshape(-1,df.shape[1])]).tolist()
print (a)
[[2, 5, 1, 4, 1, 8], [3, 6, 5, 5, 5, 9], ['A', 'B', 'C', 'D', 'E', 'F']]
names = ['first','second','third']
finaldata.columns = pd.MultiIndex.from_arrays(a, names=names)
print (finaldata)
first 2 5 1 4 1 8
second 3 6 5 5 5 9
third A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
EDIT:
ソリューションは、非常に類似している必要がありますreindex
列:
df = pd.DataFrame({'A':[2,3],
'B':[5,6],
'C':[1,5],
'D':[4,5],
'E':[1,5],
'F':[8,9]})
print (df)
A B C D E F
0 2 5 1 4 1 8
1 3 6 5 5 5 9
finaldata = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'E':[7,8,9],
'F':[1,3,5]})
print (finaldata)
A B E F
0 1 4 7 1
1 2 5 8 3
2 3 6 9 5
df1 = df.reindex(columns=finaldata.columns)
print (df1)
A B E F
0 2 5 1 8
1 3 6 5 9
names = ['first','second','third']
finaldata.columns = pd.MultiIndex.from_arrays([df1.iloc[0],
df1.iloc[1],
finaldata.columns], names=names)
print (finaldata)
first 2 5 1 8
second 3 6 5 9
third A B E F
0 1 4 7 1
1 2 5 8 3
2 3 6 9 5
I THIその問題は異なる数の列であり、df dataframeは参照オブジェクトで作られたデータフレームであるため、より多くの列を持ちます。 最終的なデータに表示されるdfの列を追加するにはどうすればいいですか? 申し訳ありません。 @jezrael – jovicbg
編集した回答を確認してください。 – jezrael
私は再び同じ問題を抱えています。 ありがとうございます:) – jovicbg