まとめとテストケースTensorflow ResourceExhaustedError最初のバッチ後
問題の核心は、Tensorflowは、私が期待するよう、初めてではないのバッチにOOM配分を投げるということです。したがって、私はすべてのメモリが明らかに各バッチの後に解放されていないので、メモリリークがあると信じています。
num_units: 50, batch_size: 1000; fails OOM (gpu) before 1st batch as expected
num_units: 50, batch_size: 800, fails OOM (gpu) before 1st batch as expected
num_units: 50, batch_size: 750; fails OOM (gpu) after 10th batch (???)
num_units: 50, batch_size: 500; fails OOM (gpu) after 90th batch (???)
num_units: 50, batch_size: 300; fails OOM (gpu) after 540th batch (???)
num_units: 50, batch_size: 200; computer freezes after around 900 batches with 100% ram use
num_units: 50, batch_size: 100; passes 1 epoch -- may fail later (unknown)
説明:
は基本的に、それは奇妙に思われる、第145バッチに失敗する前に500
のバッチサイズで144
バッチを実行します。 145番目のバッチに十分なメモリを割り当てることができない場合は、最初の144でなぜそれを動作させるのですか?動作は複製できます。各バッチは、それぞれが寸法[BATCH_SIZE, MAX_SEQUENCE_LENGTH]
を有し、サンプリングの配列に応じて、配列の長さは変化するが、プログラムを最大のバッチに失敗しないため、サイズが変化しないこと
注意。後で小さなもので失敗する。したがって、私は、1つの大きすぎるバッチがメモリエラーの原因ではないと結論づけます。メモリリークのようです。
バッチサイズが大きいほど、プログラムは早く失敗します。バッチサイズが小さいほど、後で失敗します。
フルエラーがここにある:(models.pyから)
Traceback (most recent call last):
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1323, in _do_call
return fn(*args)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1302, in _run_fn
status, run_metadata)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80]
[[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
[[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 89, in <module>
_ = sess.run([update_step])
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 889, in run
run_metadata_ptr)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1120, in _run
feed_dict_tensor, options, run_metadata)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1317, in _do_run
options, run_metadata)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1336, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80]
[[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
[[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]
Caused by op 'decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul', defined at:
File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 49, in <module>
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 309, in dynamic_decode
swap_memory=swap_memory)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2819, in while_loop
result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2643, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2593, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 254, in body
decoder_finished) = decoder.step(time, inputs, state)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/basic_decoder.py", line 138, in step
cell_outputs, cell_state = self._cell(inputs, state)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 290, in __call__
return base_layer.Layer.__call__(self, inputs, state, scope=scope)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 618, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 567, in call
array_ops.concat([inputs, h], 1), self._kernel)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 1993, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 2532, in _mat_mul
name=name)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3081, in create_op
op_def=op_def)
File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1528, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[500,80]
[[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]]
[[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]]
コードスニペット
import tensorflow as tf
from tensorflow.python.layers import core as layers_core
class NMTModel:
def __init__(self, hparams, iterator, mode):
source, target_in, target_out, source_lengths, target_lengths = iterator.get_next()
true_batch_size = tf.size(source_lengths)
# Lookup embeddings
embedding_encoder = tf.get_variable("embedding_encoder", [hparams.src_vsize, hparams.src_emsize])
encoder_emb_inp = tf.nn.embedding_lookup(embedding_encoder, source)
embedding_decoder = tf.get_variable("embedding_decoder", [hparams.tgt_vsize, hparams.tgt_emsize])
decoder_emb_inp = tf.nn.embedding_lookup(embedding_decoder, target_in)
# Build and run Encoder LSTM
encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(encoder_cell, encoder_emb_inp, sequence_length=source_lengths, dtype=tf.float32)
# Build and run Decoder LSTM with Helper and output projection layer
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units)
projection_layer = layers_core.Dense(hparams.tgt_vsize, use_bias=False)
# if mode is 'TRAIN' or mode is 'EVAL': # then decode using TrainingHelper
# helper = tf.contrib.seq2seq.TrainingHelper(decoder_emb_inp, sequence_length=target_lengths)
# elif mode is 'INFER': # then decode using Beam Search
# helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos)
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, encoder_state, output_layer=projection_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(target_lengths))
logits = outputs.rnn_output
if mode is 'TRAIN' or mode is 'EVAL': # then calculate loss
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_out, logits=logits)
target_weights = tf.sequence_mask(target_lengths, maxlen=tf.shape(target_out)[1], dtype=logits.dtype)
self.loss = tf.reduce_sum((crossent * target_weights))/tf.cast(true_batch_size, tf.float32)
if mode is 'TRAIN': # then calculate/clip gradients, then optimize model
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, hparams.max_gradient_norm)
optimizer = tf.train.AdamOptimizer(hparams.l_rate)
self.update_step = optimizer.apply_gradients(zip(clipped_gradients, params))
if mode is 'EVAL' or mode is 'INFER': # then allow access to input/output tensors to printout
self.src = source
self.tgt = target_out
self.preds = tf.argmax(logits, axis=2)
# Designate a saver operation
self.saver = tf.train.Saver(tf.global_variables())
def train(self, sess):
return sess.run([self.update_step, self.loss])
def eval(self, sess):
return sess.run([self.loss, self.src, self.tgt, self.preds])
def infer(self, sess):
return sess.run([self.src, self.tgt, self.preds]) # tgt should not exist (temporary debugging only)
(簡略化され、NMTチュートリアルに非常に似ている)完全なコード。
モデルコードイテレータコードは、data_pipeline.py
にmain.py
主あり、models.py
です。
https://github.com/nave01314/tf-nmt
Pycharm IDEのsess.run([update_step])行でデバッグできますか?数回それを実行し、利用可能な変数をチェックしてください。私は何かが(具体的にはオプティマイザで)サイズを上げ続けることを期待しています。 –
(特にオプティマイザ内) –
https://imgur.com/a/t8w1oここにオプティマイザ変数の画像があります。私はここで何を探すべきか分かりません。 –