2017-12-10 15 views
6

まとめとテストケースTensorflow ResourceExhaustedError最初のバッチ後

問題の核心は、Tensorflowは、私が期待するよう、初めてではないのバッチにOOM配分を投げるということです。したがって、私はすべてのメモリが明らかに各バッチの後に解放されていないので、メモリリークがあると信じています。

num_units: 50, batch_size: 1000; fails OOM (gpu) before 1st batch as expected 
num_units: 50, batch_size: 800, fails OOM (gpu) before 1st batch as expected 
num_units: 50, batch_size: 750; fails OOM (gpu) after 10th batch (???) 
num_units: 50, batch_size: 500; fails OOM (gpu) after 90th batch (???) 
num_units: 50, batch_size: 300; fails OOM (gpu) after 540th batch (???) 
num_units: 50, batch_size: 200; computer freezes after around 900 batches with 100% ram use 
num_units: 50, batch_size: 100; passes 1 epoch -- may fail later (unknown) 

説明:

は基本的に、それは奇妙に思われる、第145バッチに失敗する前に500のバッチサイズで144バッチを実行します。 145番目のバッチに十分なメモリを割り当てることができない場合は、最初の144でなぜそれを動作させるのですか?動作は複製できます。各バッチは、それぞれが寸法[BATCH_SIZE, MAX_SEQUENCE_LENGTH]を有し、サンプリングの配列に応じて、配列の長さは変化するが、プログラム最大のバッチに失敗しないため、サイズが変化しないこと

注意。後で小さなもので失敗する。したがって、私は、1つの大きすぎるバッチがメモリエラーの原因ではないと結論づけます。メモリリークのようです。

バッチサイズが大きいほど、プログラムは早く失敗します。バッチサイズが小さいほど、後で失敗します。

フルエラーがここにある:(models.pyから)

Traceback (most recent call last): 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1323, in _do_call 
    return fn(*args) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1302, in _run_fn 
    status, run_metadata) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__ 
    c_api.TF_GetCode(self.status.status)) 
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80] 
    [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]] 
    [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]] 

During handling of the above exception, another exception occurred: 

Traceback (most recent call last): 
    File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 89, in <module> 
    _ = sess.run([update_step]) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 889, in run 
    run_metadata_ptr) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1120, in _run 
    feed_dict_tensor, options, run_metadata) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1317, in _do_run 
    options, run_metadata) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1336, in _do_call 
    raise type(e)(node_def, op, message) 
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[500,80] 
    [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]] 
    [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]] 

Caused by op 'decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul', defined at: 
    File "/home/nave01314/IdeaProjects/tf-nmt/main.py", line 49, in <module> 
    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 309, in dynamic_decode 
    swap_memory=swap_memory) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2819, in while_loop 
    result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2643, in BuildLoop 
    pred, body, original_loop_vars, loop_vars, shape_invariants) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2593, in _BuildLoop 
    body_result = body(*packed_vars_for_body) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py", line 254, in body 
    decoder_finished) = decoder.step(time, inputs, state) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/seq2seq/python/ops/basic_decoder.py", line 138, in step 
    cell_outputs, cell_state = self._cell(inputs, state) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 290, in __call__ 
    return base_layer.Layer.__call__(self, inputs, state, scope=scope) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 618, in __call__ 
    outputs = self.call(inputs, *args, **kwargs) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py", line 567, in call 
    array_ops.concat([inputs, h], 1), self._kernel) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 1993, in matmul 
    a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 2532, in _mat_mul 
    name=name) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper 
    op_def=op_def) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3081, in create_op 
    op_def=op_def) 
    File "/home/nave01314/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1528, in __init__ 
    self._traceback = self._graph._extract_stack() # pylint: disable=protected-access 

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[500,80] 
    [[Node: decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](decoder/while/BasicDecoderStep/basic_lstm_cell/concat, decoder/while/BasicDecoderStep/basic_lstm_cell/MatMul/Enter)]] 
    [[Node: gradients/Add/_282 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_457_gradients/Add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](^_cloopdecoder/while/BasicDecoderStep/TrainingHelperNextInputs/add/y/_181)]] 

コードスニペット

import tensorflow as tf 
from tensorflow.python.layers import core as layers_core 


class NMTModel: 
    def __init__(self, hparams, iterator, mode): 
     source, target_in, target_out, source_lengths, target_lengths = iterator.get_next() 
     true_batch_size = tf.size(source_lengths) 

     # Lookup embeddings 
     embedding_encoder = tf.get_variable("embedding_encoder", [hparams.src_vsize, hparams.src_emsize]) 
     encoder_emb_inp = tf.nn.embedding_lookup(embedding_encoder, source) 
     embedding_decoder = tf.get_variable("embedding_decoder", [hparams.tgt_vsize, hparams.tgt_emsize]) 
     decoder_emb_inp = tf.nn.embedding_lookup(embedding_decoder, target_in) 

     # Build and run Encoder LSTM 
     encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units) 
     encoder_outputs, encoder_state = tf.nn.dynamic_rnn(encoder_cell, encoder_emb_inp, sequence_length=source_lengths, dtype=tf.float32) 

     # Build and run Decoder LSTM with Helper and output projection layer 
     decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(hparams.num_units) 
     projection_layer = layers_core.Dense(hparams.tgt_vsize, use_bias=False) 
     # if mode is 'TRAIN' or mode is 'EVAL': # then decode using TrainingHelper 
     #  helper = tf.contrib.seq2seq.TrainingHelper(decoder_emb_inp, sequence_length=target_lengths) 
     # elif mode is 'INFER': # then decode using Beam Search 
     #  helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos) 
     helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding_decoder, tf.fill([true_batch_size], hparams.sos), hparams.eos) 
     decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, encoder_state, output_layer=projection_layer) 
     outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(target_lengths)) 
     logits = outputs.rnn_output 

     if mode is 'TRAIN' or mode is 'EVAL': # then calculate loss 
      crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_out, logits=logits) 
      target_weights = tf.sequence_mask(target_lengths, maxlen=tf.shape(target_out)[1], dtype=logits.dtype) 
      self.loss = tf.reduce_sum((crossent * target_weights))/tf.cast(true_batch_size, tf.float32) 

     if mode is 'TRAIN': # then calculate/clip gradients, then optimize model 
      params = tf.trainable_variables() 
      gradients = tf.gradients(self.loss, params) 
      clipped_gradients, _ = tf.clip_by_global_norm(gradients, hparams.max_gradient_norm) 

      optimizer = tf.train.AdamOptimizer(hparams.l_rate) 
      self.update_step = optimizer.apply_gradients(zip(clipped_gradients, params)) 

     if mode is 'EVAL' or mode is 'INFER': # then allow access to input/output tensors to printout 
      self.src = source 
      self.tgt = target_out 
      self.preds = tf.argmax(logits, axis=2) 

     # Designate a saver operation 
     self.saver = tf.train.Saver(tf.global_variables()) 

    def train(self, sess): 
     return sess.run([self.update_step, self.loss]) 

    def eval(self, sess): 
     return sess.run([self.loss, self.src, self.tgt, self.preds]) 

    def infer(self, sess): 
     return sess.run([self.src, self.tgt, self.preds]) # tgt should not exist (temporary debugging only) 

(簡略化され、NMTチュートリアルに非常に似ている)完全なコード。

モデルコードイテレータコードは、data_pipeline.pymain.py主あり、models.pyです。

https://github.com/nave01314/tf-nmt

+1

Pycharm IDEのsess.run([update_step])行でデバッグできますか?数回それを実行し、利用可能な変数をチェックしてください。私は何かが(具体的にはオプティマイザで)サイズを上げ続けることを期待しています。 –

+0

(特にオプティマイザ内) –

+0

https://imgur.com/a/t8w1oここにオプティマイザ変数の画像があります。私はここで何を探すべきか分かりません。 –

答えて

0

バッチは可変長であるため、より小さなバッチはOOMなしで渡すことができ、大きなバッチは通過できないことがあります。

実装に応じて、バッチの長さ(他のすべてのシーケンスがその長さまでパディングされるようなバッチの最大長)を印刷して、問題が原因であるかどうかを判断できます。

これを修正するには、バッチサイズを小さくするか、イテレータの最大長を設定します。

これはメモリリークではありません。

1

ほとんどの場合、OOMのエラーが発生tf.GraphDefプロトコルバッファの内部2GBの制限があります。

入力テンソル[BATCH_SIZE, MAX_SEQUENCE_LENGTH]がおそらくその上限に達します。もっと小さなバッチを試してみてください。

+0

しかし、なぜ最初のバッチ後に失敗しますか?バッチ間でメモリを保持するのはなぜですか?これは予想される動作ですか? –

関連する問題