0
予測ピクセルと最も近い地上画素との間のユークリッド距離を計算する損失関数がありますか?具体的には、これは強度距離ではなく位置距離です。予測からユークリッド距離を表すLoss関数
これは、バイナリ予測とバイナリグランドトゥルースになります。
予測ピクセルと最も近い地上画素との間のユークリッド距離を計算する損失関数がありますか?具体的には、これは強度距離ではなく位置距離です。予測からユークリッド距離を表すLoss関数
これは、バイナリ予測とバイナリグランドトゥルースになります。
例えば、平均二乗誤差(RMSE)のルートです:
model.compile(loss='rmse', optimizer='adagrad')
しかし、原因でhttps://github.com/fchollet/keras/issues/1170ここで議論されているものの代わりに、平均二乗誤差を使用した方がよいかもしれません:
すなわち、Kerasは損失バッチをバッチごとに計算する。不一致を避けるために 代わりにMSEを使用することをお勧めします。 (https://keras.io/losses/#binary_crossentropy)
model.compile(loss='rmse', optimizer='adagrad')
しかし、あなたのデータはバイナリだけの予測を持っているので、私が代わりにbinary_crossentropyを助言する:
ように
model.compile(loss='binary_crossentropy', optimizer='adagrad')
申し訳ありませんが、私は明確にすべき - 私は、強度の距離ではなく、位置の距離を意味します。すなわち、私が(1,1)にpredicitonピクセルを、(2,3)にgroundtruthピクセルを持つ場合、損失は2.24になります。 – user135237
平均二乗誤差の目的の根でその例を確認してください。 – maz