2017-06-22 11 views
0

私は機械学習を練習しています。そして、私はmnistチュートリアルに出くわしました。学習中に、私はこのコードを作った。 NPmnistデータセットから正確な結果を生成できません

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

n_hidden_layer_1 = 500 
n_hidden_layer_2 = 500 
n_hidden_layer_3 = 500 

n_classes = 10 
batch_size = 100 

x = tf.placeholder('float', shape = [None, 784]) 
y = tf.placeholder('float') 

hidden_layer_1 = { 
    'weights': tf.Variable(tf.random_normal(shape = [784, n_hidden_layer_1])), 
    'bias': tf.Variable(tf.random_normal(shape = [n_hidden_layer_1])) 
} 

hidden_layer_2 = { 
    'weights': tf.Variable(tf.random_normal(shape = [n_hidden_layer_1, n_hidden_layer_2])), 
    'bias': tf.Variable(tf.random_normal(shape = [n_hidden_layer_2])) 
} 

hidden_layer_3 = { 
    'weights': tf.Variable(tf.random_normal(shape = [n_hidden_layer_2, n_hidden_layer_3])), 
    'bias': tf.Variable(tf.random_normal(shape = [n_hidden_layer_3])) 
} 

output_layer = { 
    'weights': tf.Variable(tf.random_normal(shape = [n_hidden_layer_3, n_classes])), 
    'bias': tf.Variable(tf.random_normal(shape = [n_classes])) 
} 

hidden_layer_1_output = tf.nn.relu(tf.add(tf.matmul(x, hidden_layer_1['weights']), hidden_layer_1['bias'])) 
hidden_layer_2_output = tf.nn.relu(tf.add(tf.matmul(hidden_layer_1_output, hidden_layer_2['weights']), hidden_layer_2['bias'])) 
hidden_layer_3_output = tf.nn.relu(tf.add(tf.matmul(hidden_layer_2_output, hidden_layer_3['weights']), hidden_layer_3['bias'])) 
final_output = tf.nn.relu(tf.add(tf.matmul(hidden_layer_3_output, output_layer['weights']), output_layer['bias'])) 

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=final_output, labels=y)) 
model = tf.train.AdamOptimizer().minimize(cost) 

epochs = 10 

with tf.Session() as sess: 
    sess.run(tf.global_variables_initializer()) 
    for i in range(epochs): 
     epoch_loss = 0 
     for _ in range(mnist.train.num_examples/batch_size): 
      P,Q = mnist.train.next_batch(batch_size) 
      _,c = sess.run([model, cost], feed_dict = {x:P, y:Q}) 
      epoch_loss+=c 

     print("Epoch no:",i,"Epoch_loss:",epoch_loss) 
    correct = tf.equal(tf.argmax(final_output,1), tf.argmax(y,1)) 
    accuracy = tf.reduce_mean(tf.cast(correct, 'float'))  
    print("accuracy: ",accuracy.eval({x:mnist.test.images, y:mnist.test.labels})) 

として

輸入numpyのINPUT_DATA tensorflow.examples.tutorials.mnistインポートから TFとして `輸入tensorflow生成された結果は、

Extracting /tmp/data/train-images-idx3-ubyte.gz 
Extracting /tmp/data/train-labels-idx1-ubyte.gz 
Extracting /tmp/data/t10k-images-idx3-ubyte.gz 
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz 
('Epoch no:', 0, 'Epoch_loss:', 265771.25100541115) 
('Epoch no:', 1, 'Epoch_loss:', 1310.440309047699) 
('Epoch no:', 2, 'Epoch_loss:', 1262.8069067001343) 
('Epoch no:', 3, 'Epoch_loss:', 1262.8069069385529) 
('Epoch no:', 4, 'Epoch_loss:', 1262.8069067001343) 
('Epoch no:', 5, 'Epoch_loss:', 1262.8069069385529) 
('Epoch no:', 6, 'Epoch_loss:', 1262.8069067001343) 
('Epoch no:', 7, 'Epoch_loss:', 1262.8069067001343) 
('Epoch no:', 8, 'Epoch_loss:', 1262.8069064617157) 
('Epoch no:', 9, 'Epoch_loss:', 1262.8069064617157) 
('accuracy: ', 0.1008) 

あなたが可能な理由を教えてくださいすることができていますこのコードで私の結果が不正確で、改善する方法は?

+0

私はそれが十分ではない_tremendously_エポックだ賭けます。何百というものを目指すべきだと私は思います。 – ForceBru

答えて

2

あなたのコードに問題がいくつかあります:

  1. はfinal_output上reluの活性化を削除します。 softmax_cross_entropy_with_logitsは、final_outputにsoftmaxのアクティブ化を適用します。

  2. 重みの標準偏差を低い値に設定します。

    'weights': tf.Variable(tf.random_normal(shape = [784, n_hidden_layer_1], stddev=0.005)) 
    
+0

ありがとう。.. :)それは私の問題を大きく解決した.. – Desmnd

関連する問題