2017-10-06 15 views
0

hereに基づいてランダムフォレストコードを使用します。 ここでは、(質問を見るために最後までスキップ)です:ランダムフォレストコードのデータセットを変更すると異常な結果が発生する

# Select the best split point for a dataset 
def get_split(dataset, n_features): 
    class_values = list(set(row[-1] for row in dataset)) 
    b_index, b_value, b_score, b_groups = 999, 999, 999, None 
    features = list() 
    while len(features) < n_features: 
     index = randrange(len(dataset[0])-1) 
     if index not in features: 
      features.append(index) 
    for index in features: 
     for row in dataset: 
      groups = test_split(index, row[index], dataset) 
      gini = gini_index(groups, class_values) 
      if gini < b_score: 
       b_index, b_value, b_score, b_groups = index, row[index], gini, groups 
    return {'index':b_index, 'value':b_value, 'groups':b_groups} 


# Random Forest Algorithm on Sonar Dataset 
from random import seed 
from random import randrange 
from csv import reader 
from math import sqrt 


# Load a CSV file 
def load_csv(filename): 
    dataset = list() 
    with open(filename, 'r') as file: 
     csv_reader = reader(file) 
     for row in csv_reader: 
      if not row: 
       continue 
      dataset.append(row) 
    return dataset 


# Convert string column to float 
def str_column_to_float(dataset, column): 
    for row in dataset: 
     row[column] = float(row[column].strip()) 


# Convert string column to integer 
def str_column_to_int(dataset, column): 
    class_values = [row[column] for row in dataset] 
    unique = set(class_values) 
    lookup = dict() 
    for i, value in enumerate(unique): 
     lookup[value] = i 
    for row in dataset: 
     row[column] = lookup[row[column]] 
    return lookup 


# Split a dataset into k folds 
def cross_validation_split(dataset, n_folds): 
    dataset_split = list() 
    dataset_copy = list(dataset) 
    fold_size = int(len(dataset)/n_folds) 
    for i in range(n_folds): 
     fold = list() 
     while len(fold) < fold_size: 
      index = randrange(len(dataset_copy)) 
      fold.append(dataset_copy.pop(index)) 
     dataset_split.append(fold) 
    return dataset_split 


# Calculate accuracy percentage 
def accuracy_metric(actual, predicted): 
    correct = 0 
    for i in range(len(actual)): 
     if actual[i] == predicted[i]: 
      correct += 1 
    return correct/float(len(actual)) * 100.0 


# Evaluate an algorithm using a cross validation split 
def evaluate_algorithm(dataset, algorithm, n_folds, *args): 
    folds = cross_validation_split(dataset, n_folds) 
    scores = list() 
    for fold in folds: 
     train_set = list(folds) 
     train_set.remove(fold) 
     train_set = sum(train_set, []) 
     test_set = list() 
     for row in fold: 
      row_copy = list(row) 
      test_set.append(row_copy) 
      row_copy[-1] = None 
     predicted = algorithm(train_set, test_set, *args) 
     actual = [row[-1] for row in fold] 
     accuracy = accuracy_metric(actual, predicted) 
     scores.append(accuracy) 
    return scores 


# Split a dataset based on an attribute and an attribute value 
def test_split(index, value, dataset): 
    left, right = list(), list() 
    for row in dataset: 
     if row[index] < value: 
      left.append(row) 
     else: 
      right.append(row) 
    return left, right 


# Calculate the Gini index for a split dataset 
def gini_index(groups, classes): 
    # count all samples at split point 
    n_instances = float(sum([len(group) for group in groups])) 
    # sum weighted Gini index for each group 
    gini = 0.0 
    for group in groups: 
     size = float(len(group)) 
     # avoid divide by zero 
     if size == 0: 
      continue 
     score = 0.0 
     # score the group based on the score for each class 
     for class_val in classes: 
      p = [row[-1] for row in group].count(class_val)/size 
      score += p * p 
     # weight the group score by its relative size 
     gini += (1.0 - score) * (size/n_instances) 
    return gini 


# Select the best split point for a dataset 
def get_split(dataset, n_features): 
    class_values = list(set(row[-1] for row in dataset)) 
    b_index, b_value, b_score, b_groups = 999, 999, 999, None 
    features = list() 
    while len(features) < n_features: 
     index = randrange(len(dataset[0]) - 1) 
     if index not in features: 
      features.append(index) 
    for index in features: 
     for row in dataset: 
      groups = test_split(index, row[index], dataset) 
      gini = gini_index(groups, class_values) 
      if gini < b_score: 
       b_index, b_value, b_score, b_groups = index, row[index], gini, groups 
    return {'index': b_index, 'value': b_value, 'groups': b_groups} 


# Create a terminal node value 
def to_terminal(group): 
    outcomes = [row[-1] for row in group] 
    return max(set(outcomes), key=outcomes.count) 


# Create child splits for a node or make terminal 
def split(node, max_depth, min_size, n_features, depth): 
    left, right = node['groups'] 
    del (node['groups']) 
    # check for a no split 
    if not left or not right: 
     node['left'] = node['right'] = to_terminal(left + right) 
     return 
    # check for max depth 
    if depth >= max_depth: 
     node['left'], node['right'] = to_terminal(left), to_terminal(right) 
     return 
    # process left child 
    if len(left) <= min_size: 
     node['left'] = to_terminal(left) 
    else: 
     node['left'] = get_split(left, n_features) 
     split(node['left'], max_depth, min_size, n_features, depth + 1) 
    # process right child 
    if len(right) <= min_size: 
     node['right'] = to_terminal(right) 
    else: 
     node['right'] = get_split(right, n_features) 
     split(node['right'], max_depth, min_size, n_features, depth + 1) 


# Build a decision tree 
def build_tree(train, max_depth, min_size, n_features): 
    root = get_split(train, n_features) 
    split(root, max_depth, min_size, n_features, 1) 
    return root 


# Make a prediction with a decision tree 
def predict(node, row): 
    if row[node['index']] < node['value']: 
     if isinstance(node['left'], dict): 
      return predict(node['left'], row) 
     else: 
      return node['left'] 
    else: 
     if isinstance(node['right'], dict): 
      return predict(node['right'], row) 
     else: 
      return node['right'] 


# Create a random subsample from the dataset with replacement 
def subsample(dataset, ratio): 
    sample = list() 
    n_sample = round(len(dataset) * ratio) 
    while len(sample) < n_sample: 
     index = randrange(len(dataset)) 
     sample.append(dataset[index]) 
    return sample 


# Make a prediction with a list of bagged trees 
def bagging_predict(trees, row): 
    predictions = [predict(tree, row) for tree in trees] 
    return max(set(predictions), key=predictions.count) 


# Random Forest Algorithm 
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features): 
    trees = list() 
    for i in range(n_trees): 
     sample = subsample(train, sample_size) 
     tree = build_tree(sample, max_depth, min_size, n_features) 
     trees.append(tree) 
    predictions = [bagging_predict(trees, row) for row in test] 
    return (predictions) 

それを一般化するために、それは私が次のように書いたすべてのデータセットのために実行されるように:

import pandas as pd 
file_path ='http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data' 
dataset2 =pd.read_csv(file_path, header=None, sep=',') 
v = dataset2.values 

f = pd.factorize(v.ravel())[0].reshape(v.shape) 

dataset1 = pd.DataFrame(f) 
df = dataset1.astype('str') 

dataset = df.values.tolist() 
target_index = 60 
for i in range(0, len(dataset[0])): 
     if i != target_index: 
      str_column_to_float(dataset, i) 
# convert class column to integers 
str_column_to_int(dataset, target_index) 
n_folds = 5 
max_depth = 10 
min_size = 1 
sample_size = 1.0 
n_features = int(sqrt(len(dataset[0]) - 1)) 


for n_trees in [5]: 
    scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features) 
    print('Trees: %d' % n_trees) 
    print('Scores: %s' % scores) 
    print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))) 

上記前述のコードはSONARデータセットに最適です。この構造は次のとおりです。私は乳癌、ウィスコンシン州にデータセットを変更すると

Trees: 5 
Scores: [100.0, 95.1219512195122, 100.0, 97.5609756097561, 100.0] 
Mean Accuracy: 98.537% 

0.0200,0.0371,0.0428,0.0207,0.0954,0.0986,0.1539,0.1601,0.3109,0.2111,0.1609,0.1582,0.2238,0.0645,0.0660,0.2273,0.3100,0.2999,0.5078,0.4797,0.5783,0.5071,0.4328,0.5550,0.6711,0.6415,0.7104,0.8080,0.6791,0.3857,0.1307,0.2604,0.5121,0.7547,0.8537,0.8507,0.6692,0.6097,0.4943,0.2744,0.0510,0.2834,0.2825,0.4256,0.2641,0.1386,0.1051,0.1343,0.0383,0.0324,0.0232,0.0027,0.0065,0.0159,0.0072,0.0167,0.0180,0.0084,0.0090,0.0032,R 
0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.4918,0.6552,0.6919,0.7797,0.7464,0.9444,1.0000,0.8874,0.8024,0.7818,0.5212,0.4052,0.3957,0.3914,0.3250,0.3200,0.3271,0.2767,0.4423,0.2028,0.3788,0.2947,0.1984,0.2341,0.1306,0.4182,0.3835,0.1057,0.1840,0.1970,0.1674,0.0583,0.1401,0.1628,0.0621,0.0203,0.0530,0.0742,0.0409,0.0061,0.0125,0.0084,0.0089,0.0048,0.0094,0.0191,0.0140,0.0049,0.0052,0.0044,R 

は、これらの結果(それはOKらしい)です

私は変更
842302,M,17.99,10.38,122.8,1001,0.1184,0.2776,0.3001,0.1471,0.2419,0.07871,1.095,0.9053,8.589,153.4,0.006399,0.04904,0.05373,0.01587,0.03003,0.006193,25.38,17.33,184.6,2019,0.1622,0.6656,0.7119,0.2654,0.4601,0.1189 
842517,M,20.57,17.77,132.9,1326,0.08474,0.07864,0.0869,0.07017,0.1812,0.05667,0.5435,0.7339,3.398,74.08,0.005225,0.01308,0.0186,0.0134,0.01389,0.003532,24.99,23.41,158.8,1956,0.1238,0.1866,0.2416,0.186,0.275,0.08902 

関連コードを

import pandas as pd 
file_path ='https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data' 
dataset2 =pd.read_csv(file_path, header=None, sep=',') 
v = dataset2.values 

f = pd.factorize(v.ravel())[0].reshape(v.shape) 

dataset1 = pd.DataFrame(f) 
df = dataset1.astype('str') 

dataset = df.values.tolist() 
target_index = 1 ## <---- 
for i in range(0, len(dataset[0])): 
     if i != target_index: 
      str_column_to_float(dataset, i) 
# convert class column to integers 
str_column_to_int(dataset, target_index) 
n_folds = 5 
max_depth = 10 
min_size = 1 
sample_size = 1.0 
n_features = int(sqrt(len(dataset[0]) - 1)) 


for n_trees in [5]: 
    scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features) 
    print('Trees: %d' % n_trees) 
    print('Scores: %s' % scores) 
    print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))) 

私は非常に長い時間のために実行され、結果が間違っているようだ:

Trees: 5 
Scores: [0.0, 0.0, 0.0, 0.8849557522123894, 0.0] 
Mean Accuracy: 0.177% 
+0

繰り返し実行しましたか? *ランダムフォレスト*メソッド名の中の** random **という単語は、理由のためにそこにあります...いくつかのランを試してみてはいかがですか? – sophros

答えて

1

私の知る限り、ランダムフォレスト法の性質は、性の高いデータに依存しており、この方法は、ランダムシードとノイズの両方に敏感ですデータ。したがって、データセットを、ノイズとクラスの分離性の特性が異なる別のものに変更すると、別のデータセットに対して完全に機能していても、結果は穏やかになる可能性があります。

また、方法の一部である純粋なチャンスの要因があります。したがって、検証のために達成された結果を繰り返す必要があります。あなたの結果は、そのメソッドがデータセットにはあまり適していないことを示唆していますが、この特定の実行の不運なことかもしれません。

ランダムフォレストの話題に実際に触れる必要がある場合は、Gilles Louppeの(無料で利用可能な)Understanding Random Forests: From Theory to Practiceの完全な要約をお勧めします。

CrossValidatedフォーラムでの方法のアウトライヤーの感度に関する興味深い議論もあります。

+0

乳がん - ウィスコンシンのデータセットの結果からわかるように@sophrosありがとうございました。5倍のうち4倍は精度が0%ですが、5番目は88.5%のものが魚のように見えます! – Avi

関連する問題