2016-08-20 17 views
5

OpenCVで拡張現実感プログラムを作成しようとしています。しかし、solvePnPを呼び出すと、私はいつもエラーになるようです。OpenCV PythonでsolvePnPを実行したときのエラー

OpenCVで拡張現実感プログラムを作成するには、選択された切り抜き画像のホモグラフィポイントを画像全体に置き、これらのホモグラフィポイントをsolvePnPに供給して姿勢推定を取得します。

私は正常にホモグラフィポイントを実装することができますが、何らかの理由でsolvePnPが正しく動作するように見えません。私は自分の入力が正しくフォーマットされていないと思うが、わからない。

あなたがコードを自分で実行したい場合は、gitのクローンこの(これを実行するために必要なファイルがあります): (https://github.com/vanstorm9/SLAM-experiments.git

と実行ファイル:/拡張現実/サンプルスクリプト/テスト.py

誰かがこの問題を解決できますか?

エラー:

Traceback (most recent call last): 
    File "/augmented-reality/sample-scripts/test.py", line 315, in <module> 
    (ret, rvecs, tvecs) = cv2.solvePnP(objp, corners2, mtx, dist) 
error: /opencv/modules/calib3d/src/solvepnp.cpp:61: error: (-215) npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) in function solvePnP 

solvePnPの入力とサイズ

(42, 3)  # objp 
(143, 2, 1) # corners2 
(3, 3)  # mtx 
(1, 5)  # dist 

# objp 
[[ 0. 0. 0.] 
[ 1. 0. 0.] 
[ 2. 0. 0.] 
[ 3. 0. 0.] 
[ 4. 0. 0.] 
[ 5. 0. 0.] 
[ 6. 0. 0.] 
[ 0. 1. 0.] 
[ 1. 1. 0.] 
[ 2. 1. 0.] 
[ 3. 1. 0.] 
[ 4. 1. 0.] 
[ 5. 1. 0.] 
[ 6. 1. 0.] 
[ 0. 2. 0.] 
[ 1. 2. 0.] 
[ 2. 2. 0.] 
[ 3. 2. 0.] 
[ 4. 2. 0.] 
[ 5. 2. 0.] 
[ 6. 2. 0.] 
[ 0. 3. 0.] 
[ 1. 3. 0.] 
[ 2. 3. 0.] 
[ 3. 3. 0.] 
[ 4. 3. 0.] 
[ 5. 3. 0.] 
[ 6. 3. 0.] 
[ 0. 4. 0.] 
[ 1. 4. 0.] 
[ 2. 4. 0.] 
[ 3. 4. 0.] 
[ 4. 4. 0.] 
[ 5. 4. 0.] 
[ 6. 4. 0.] 
[ 0. 5. 0.] 
[ 1. 5. 0.] 
[ 2. 5. 0.] 
[ 3. 5. 0.] 
[ 4. 5. 0.] 
[ 5. 5. 0.] 
[ 6. 5. 0.]] 

#corners2 
[[[ 0.] 
    [ 0.]] 

[[ 1.] 
    [ 1.]] 

[[ 2.] 
    [ 2.]] 

[[ 3.] 
    [ 3.]] 

[[ 4.] 
    [ 4.]] 

[[ 5.] 
    [ 5.]] 

[[ 6.] 
    [ 6.]] 

[[ 7.] 
    [ 7.]] 

[[ 8.] 
    [ 8.]] 

[[ 9.] 
    [ 9.]] 

[[ 10.] 
    [ 10.]] 

[[ 11.] 
    [ 11.]] 

[[ 12.] 
    [ 12.]] 

[[ 13.] 
    [ 13.]] 

[[ 14.] 
    [ 14.]] 

[[ 15.] 
    [ 18.]] 

[[ 16.] 
    [ 19.]] 

[[ 17.] 
    [ 20.]] 

[[ 18.] 
    [ 28.]] 

[[ 19.] 
    [ 29.]] 

[[ 20.] 
    [ 30.]] 

[[ 21.] 
    [ 31.]] 

[[ 22.] 
    [ 32.]] 

[[ 23.] 
    [ 33.]] 

[[ 24.] 
    [ 35.]] 

[[ 25.] 
    [ 36.]] 

[[ 26.] 
    [ 39.]] 

[[ 27.] 
    [ 40.]] 

[[ 28.] 
    [ 41.]] 

[[ 29.] 
    [ 42.]] 

[[ 31.] 
    [ 52.]] 

[[ 32.] 
    [ 53.]] 

[[ 33.] 
    [ 54.]] 

[[ 34.] 
    [ 56.]] 

[[ 35.] 
    [ 57.]] 

[[ 36.] 
    [ 59.]] 

[[ 37.] 
    [ 60.]] 

[[ 38.] 
    [ 61.]] 

[[ 40.] 
    [ 69.]] 

[[ 41.] 
    [ 70.]] 

[[ 42.] 
    [ 71.]] 

[[ 43.] 
    [ 72.]] 

[[ 44.] 
    [ 75.]] 

[[ 45.] 
    [ 76.]] 

[[ 47.] 
    [ 78.]] 

[[ 49.] 
    [ 79.]] 

[[ 50.] 
    [ 86.]] 

[[ 51.] 
    [ 87.]] 

[[ 52.] 
    [ 88.]] 

[[ 53.] 
    [ 89.]] 

[[ 54.] 
    [ 90.]] 

[[ 55.] 
    [ 94.]] 

[[ 48.] 
    [ 95.]] 

[[ 56.] 
    [ 101.]] 

[[ 42.] 
    [ 105.]] 

[[ 61.] 
    [ 109.]] 

[[ 62.] 
    [ 110.]] 

[[ 57.] 
    [ 111.]] 

[[ 58.] 
    [ 112.]] 

[[ 61.] 
    [ 113.]] 

[[ 59.] 
    [ 115.]] 

[[ 58.] 
    [ 116.]] 

[[ 63.] 
    [ 117.]] 

[[ 60.] 
    [ 118.]] 

[[ 70.] 
    [ 119.]] 

[[ 71.] 
    [ 120.]] 

[[ 74.] 
    [ 125.]] 

[[ 75.] 
    [ 126.]] 

[[ 76.] 
    [ 128.]] 

[[ 77.] 
    [ 129.]] 

[[ 78.] 
    [ 131.]] 

[[ 66.] 
    [ 133.]] 

[[ 67.] 
    [ 134.]] 

[[ 69.] 
    [ 135.]] 

[[ 79.] 
    [ 136.]] 

[[ 72.] 
    [ 137.]] 

[[ 80.] 
    [ 139.]] 

[[ 73.] 
    [ 140.]] 

[[ 83.] 
    [ 141.]] 

[[ 82.] 
    [ 142.]] 

[[ 91.] 
    [ 143.]] 

[[ 92.] 
    [ 144.]] 

[[ 93.] 
    [ 145.]] 

[[ 94.] 
    [ 146.]] 

[[ 85.] 
    [ 147.]] 

[[ 86.] 
    [ 148.]] 

[[ 87.] 
    [ 149.]] 

[[ 95.] 
    [ 150.]] 

[[ 101.] 
    [ 153.]] 

[[ 102.] 
    [ 154.]] 

[[ 103.] 
    [ 155.]] 

[[ 104.] 
    [ 156.]] 

[[ 105.] 
    [ 157.]] 

[[ 106.] 
    [ 158.]] 

[[ 107.] 
    [ 159.]] 

[[ 108.] 
    [ 160.]] 

[[ 109.] 
    [ 161.]] 

[[ 110.] 
    [ 163.]] 

[[ 111.] 
    [ 164.]] 

[[ 112.] 
    [ 165.]] 

[[ 113.] 
    [ 166.]] 

[[ 114.] 
    [ 167.]] 

[[ 99.] 
    [ 168.]] 

[[ 100.] 
    [ 169.]] 

[[ 118.] 
    [ 171.]] 

[[ 119.] 
    [ 172.]] 

[[ 120.] 
    [ 173.]] 

[[ 121.] 
    [ 174.]] 

[[ 122.] 
    [ 175.]] 

[[ 123.] 
    [ 176.]] 

[[ 102.] 
    [ 177.]] 

[[ 103.] 
    [ 178.]] 

[[ 106.] 
    [ 180.]] 

[[ 107.] 
    [ 181.]] 

[[ 124.] 
    [ 182.]] 

[[ 115.] 
    [ 183.]] 

[[ 116.] 
    [ 184.]] 

[[ 117.] 
    [ 187.]] 

[[ 150.] 
    [ 188.]] 

[[ 128.] 
    [ 192.]] 

[[ 127.] 
    [ 194.]] 

[[ 129.] 
    [ 197.]] 

[[ 130.] 
    [ 198.]] 

[[ 131.] 
    [ 199.]] 

[[ 135.] 
    [ 200.]] 

[[ 136.] 
    [ 201.]] 

[[ 137.] 
    [ 202.]] 

[[ 138.] 
    [ 203.]] 

[[ 134.] 
    [ 204.]] 

[[ 113.] 
    [ 205.]] 

[[ 141.] 
    [ 206.]] 

[[ 142.] 
    [ 207.]] 

[[ 145.] 
    [ 208.]] 

[[ 143.] 
    [ 212.]] 

[[ 144.] 
    [ 213.]] 

[[ 149.] 
    [ 214.]] 

[[ 157.] 
    [ 216.]] 

[[ 159.] 
    [ 218.]] 

[[ 131.] 
    [ 220.]] 

[[ 112.] 
    [ 221.]] 

[[ 163.] 
    [ 223.]] 

[[ 164.] 
    [ 224.]] 

[[ 157.] 
    [ 228.]]] 

コード

#!/usr/bin/python 
# -*- coding: utf-8 -*- 
import numpy as np 
import cv2 
import glob 

# Load previously saved data 

mtx = np.load('calib-matrix/mtx.npy') 
dist = np.load('calib-matrix/dist.npy') 

rect = (0, 0, 0, 0) 
startPoint = False 
endPoint = False 

selectedPoint = False 


def on_mouse(
    event, 
    x, 
    y, 
    flags, 
    params, 
    ): 

    global rect, startPoint, endPoint, selectedPoint 

    # get mouse click 

    if event == cv2.EVENT_LBUTTONDOWN: 

     if startPoint == True and endPoint == True: 

     # Resets and delete box once you are done 

      startPoint = False 
      endPoint = False 
      rect = (0, 0, 0, 0) 

     if startPoint == False: 

     # First click, waits for final click to create box 

      rect = (x, y, 0, 0) 
      startPoint = True 
     elif endPoint == False: 

     # creates the box (I think} 

      rect = (rect[0], rect[1], x, y) 
      print '________________' 
      print 'Rectangle location: ', rect[0], ' ', rect[1], ' ', \ 
       x, ' ', y 
      endPoint = True 

    return 


def drawCube(img, corners, imgpts): 
    imgpts = np.int32(imgpts).reshape(-1, 2) 

    # draw ground floor in green 

    img = cv2.drawContours(img, [imgpts[:4]], -1, (0, 255, 0), -3) 

    # draw pillars in blue color 

    for (i, j) in zip(range(4), range(4, 8)): 
     img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]), 255, 3) 

    # draw top layer in red color 

    img = cv2.drawContours(img, [imgpts[4:]], -1, (0, 0, 255), 3) 

    return img 


def draw(img, corners, imgpts): 
    corner = tuple(corners[0].ravel()) 
    img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255, 0, 0), 
        5) 
    img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0, 255, 0), 
        5) 
    img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0, 0, 255), 
        5) 
    return img 


def detectAndDescribe(image): 

    # convert the image to grayscale 
    # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

    # detect and extract features from the image 

    descriptor = cv2.xfeatures2d.SIFT_create() 
    (kps, features) = descriptor.detectAndCompute(image, None) 

    # convert the keypoints from KeyPoint objects to NumPy 
    # arrays 

    kps = np.float32([kp.pt for kp in kps]) 

    # return a tuple of keypoints and features 

    return (kps, features) 


def matchKeypoints(
    kpsA, 
    kpsB, 
    featuresA, 
    featuresB, 
    ratio, 
    reprojThresh, 
    ): 

    # compute the raw matches and initialize the list of actual 
    # matches 

    matcher = cv2.DescriptorMatcher_create('BruteForce') 
    rawMatches = matcher.knnMatch(featuresA, featuresB, 2) 
    matches = [] 
    match_ar = [] 

    i = 0 

    # loop over the raw matches 

    for m in rawMatches: 

     # ensure the distance is within a certain ratio of each 
     # other (i.e. Lowe's ratio test) 

     if len(m) == 2 and m[0].distance < m[1].distance * ratio: 
      matches.append((m[0].trainIdx, m[0].queryIdx)) 
      if i == 0: 
       match_ar = np.array([[[m[0].trainIdx], 
            [m[0].queryIdx]]], dtype=np.float) 
       match_ar = match_ar.transpose() 
       match_ar = list(match_ar) 
       print type(match_ar) 
       i = i + 1 
      else: 
       m_add = np.array([[m[0].trainIdx], 
           [m[0].queryIdx]])[None, :] 
       m_add = m_add.transpose() 
       match_ar = np.concatenate([match_ar, m_add]) 


    # computing a homography requires at least 4 matches 

    if len(matches) > 4: 

     # construct the two sets of points 

     ptsA = np.float32([kpsA[i] for (_, i) in matches]) 
     ptsB = np.float32([kpsB[i] for (i, _) in matches]) 

     # compute the homography between the two sets of points 

     (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, 
       reprojThresh) 

     # return the matches along with the homograpy matrix 
     # and status of each matched point 
     # return (matches, H, status) 

     return (matches, match_ar, H, status) 

    # otherwise, no homograpy could be computed 

    return None 


def drawMatches(
    imageA, 
    imageB, 
    kpsA, 
    kpsB, 
    matches, 
    status, 
    ): 

    # initialize the output visualization image 

    (hA, wA) = imageA.shape[:2] 
    (hB, wB) = imageB.shape[:2] 
    vis = np.zeros((max(hA, hB), wA + wB, 3), dtype='uint8') 
    print imageA.shape 
    print imageB.shape 
    vis[0:hA, 0:wA] = imageA 
    vis[0:hB, wA:] = imageB 

    # loop over the matches 

    for ((trainIdx, queryIdx), s) in zip(matches, status): 

     # only process the match if the keypoint was successfully 
     # matched 

     if s == 1: 

      # draw the match 

      ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1])) 
      ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1])) 
      cv2.line(vis, ptA, ptB, (0, 255, 0), 1) 

    # return the visualization 

    return vis 


criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 
      0.001) 
objp = np.zeros((6 * 7, 3), np.float32) 
objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2) 



axis = np.float32([[3, 0, 0], [0, 3, 0], [0, 0, -3]]).reshape(-1, 3) 
cubeAxis = np.float32([ 
    [0, 0, 0], 
    [0, 3, 0], 
    [3, 3, 0], 
    [3, 0, 0], 
    [0, 0, -3], 
    [0, 3, -3], 
    [3, 3, -3], 
    [3, 0, -3], 
    ]) 

# Here we are going to try to define our corners 

#fname = 'images/left01.jpg' 
fname = 'images/checkerboard4.jpg' 

img = cv2.imread(fname) 

cv2.namedWindow('Label') 
cv2.setMouseCallback('Label', on_mouse) 

''' 
while 1: 
    if selectedPoint == True: 
     break 

    if startPoint == True and endPoint == True: 
     cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), 
         (255, 0, 255), 2) 
    cv2.imshow('Label', img) 
    if cv2.waitKey(20) & 255 == 27: 
     break 
cv2.destroyAllWindows() 
''' 


''' 
reference_color = img[rect[1]:rect[3], rect[0]:rect[2]] 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
reference_img = gray[rect[1]:rect[3], rect[0]:rect[2]] 
''' 
reference_color = img[101:400, 92:574] 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
reference_img = gray[101:400, 92:574] 



####### Attempting to preform homography ####### 

sift = cv2.xfeatures2d.SIFT_create() 

(kp1, des1) = detectAndDescribe(gray) 
(kp2, des2) = detectAndDescribe(reference_img) 


(M, M_ar, H, status) = matchKeypoints(kp1,kp2,des1,des2,0.75,4.0,) 

if M is None: 
    print 'No matches found' 
    exit() 

print 'Matches found' 

# vis = drawMatches(gray, reference_img, kp1, kp2, M, status) 

vis = drawMatches(img,reference_color,kp1,kp2,M,status) 
cv2.imshow('vis', vis) 
cv2.waitKey(0) 

corners2 = M_ar 



if 1 == 1: 

    # Find the rotation and translation vectors. 
    print 'here' 
    (ret, rvecs, tvecs) = cv2.solvePnP(objp, corners2, mtx, dist) 

    # project 3D points to image plane 

    (imgpts, jac) = cv2.projectPoints(cubeAxis, rvecs, tvecs, mtx, dist) 

    img = drawCube(img, corners2, imgpts) 
    cv2.imshow('img', img) 
    k = cv2.waitKey(0) & 255 
else: 
    print 'No corners were detected' 

答えて

0

私はあなたがそれを修正したりしませんでしたかわかりません。おそらく、それを修正するために_,rvecs, tvecs, inliers = cv2.solvePnPRansac(objp, corners2, mtx, dist)を使うことができます。 solvePnPは変更されましたが、まだ自分のチュートリアルでは記述されていませんでした。

関連する問題