OpenCVで拡張現実感プログラムを作成しようとしています。しかし、solvePnPを呼び出すと、私はいつもエラーになるようです。OpenCV PythonでsolvePnPを実行したときのエラー
OpenCVで拡張現実感プログラムを作成するには、選択された切り抜き画像のホモグラフィポイントを画像全体に置き、これらのホモグラフィポイントをsolvePnPに供給して姿勢推定を取得します。
私は正常にホモグラフィポイントを実装することができますが、何らかの理由でsolvePnPが正しく動作するように見えません。私は自分の入力が正しくフォーマットされていないと思うが、わからない。
あなたがコードを自分で実行したい場合は、gitのクローンこの(これを実行するために必要なファイルがあります): (https://github.com/vanstorm9/SLAM-experiments.git)
と実行ファイル:/拡張現実/サンプルスクリプト/テスト.py
誰かがこの問題を解決できますか?
エラー:
Traceback (most recent call last):
File "/augmented-reality/sample-scripts/test.py", line 315, in <module>
(ret, rvecs, tvecs) = cv2.solvePnP(objp, corners2, mtx, dist)
error: /opencv/modules/calib3d/src/solvepnp.cpp:61: error: (-215) npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) in function solvePnP
solvePnPの入力とサイズ
(42, 3) # objp
(143, 2, 1) # corners2
(3, 3) # mtx
(1, 5) # dist
# objp
[[ 0. 0. 0.]
[ 1. 0. 0.]
[ 2. 0. 0.]
[ 3. 0. 0.]
[ 4. 0. 0.]
[ 5. 0. 0.]
[ 6. 0. 0.]
[ 0. 1. 0.]
[ 1. 1. 0.]
[ 2. 1. 0.]
[ 3. 1. 0.]
[ 4. 1. 0.]
[ 5. 1. 0.]
[ 6. 1. 0.]
[ 0. 2. 0.]
[ 1. 2. 0.]
[ 2. 2. 0.]
[ 3. 2. 0.]
[ 4. 2. 0.]
[ 5. 2. 0.]
[ 6. 2. 0.]
[ 0. 3. 0.]
[ 1. 3. 0.]
[ 2. 3. 0.]
[ 3. 3. 0.]
[ 4. 3. 0.]
[ 5. 3. 0.]
[ 6. 3. 0.]
[ 0. 4. 0.]
[ 1. 4. 0.]
[ 2. 4. 0.]
[ 3. 4. 0.]
[ 4. 4. 0.]
[ 5. 4. 0.]
[ 6. 4. 0.]
[ 0. 5. 0.]
[ 1. 5. 0.]
[ 2. 5. 0.]
[ 3. 5. 0.]
[ 4. 5. 0.]
[ 5. 5. 0.]
[ 6. 5. 0.]]
#corners2
[[[ 0.]
[ 0.]]
[[ 1.]
[ 1.]]
[[ 2.]
[ 2.]]
[[ 3.]
[ 3.]]
[[ 4.]
[ 4.]]
[[ 5.]
[ 5.]]
[[ 6.]
[ 6.]]
[[ 7.]
[ 7.]]
[[ 8.]
[ 8.]]
[[ 9.]
[ 9.]]
[[ 10.]
[ 10.]]
[[ 11.]
[ 11.]]
[[ 12.]
[ 12.]]
[[ 13.]
[ 13.]]
[[ 14.]
[ 14.]]
[[ 15.]
[ 18.]]
[[ 16.]
[ 19.]]
[[ 17.]
[ 20.]]
[[ 18.]
[ 28.]]
[[ 19.]
[ 29.]]
[[ 20.]
[ 30.]]
[[ 21.]
[ 31.]]
[[ 22.]
[ 32.]]
[[ 23.]
[ 33.]]
[[ 24.]
[ 35.]]
[[ 25.]
[ 36.]]
[[ 26.]
[ 39.]]
[[ 27.]
[ 40.]]
[[ 28.]
[ 41.]]
[[ 29.]
[ 42.]]
[[ 31.]
[ 52.]]
[[ 32.]
[ 53.]]
[[ 33.]
[ 54.]]
[[ 34.]
[ 56.]]
[[ 35.]
[ 57.]]
[[ 36.]
[ 59.]]
[[ 37.]
[ 60.]]
[[ 38.]
[ 61.]]
[[ 40.]
[ 69.]]
[[ 41.]
[ 70.]]
[[ 42.]
[ 71.]]
[[ 43.]
[ 72.]]
[[ 44.]
[ 75.]]
[[ 45.]
[ 76.]]
[[ 47.]
[ 78.]]
[[ 49.]
[ 79.]]
[[ 50.]
[ 86.]]
[[ 51.]
[ 87.]]
[[ 52.]
[ 88.]]
[[ 53.]
[ 89.]]
[[ 54.]
[ 90.]]
[[ 55.]
[ 94.]]
[[ 48.]
[ 95.]]
[[ 56.]
[ 101.]]
[[ 42.]
[ 105.]]
[[ 61.]
[ 109.]]
[[ 62.]
[ 110.]]
[[ 57.]
[ 111.]]
[[ 58.]
[ 112.]]
[[ 61.]
[ 113.]]
[[ 59.]
[ 115.]]
[[ 58.]
[ 116.]]
[[ 63.]
[ 117.]]
[[ 60.]
[ 118.]]
[[ 70.]
[ 119.]]
[[ 71.]
[ 120.]]
[[ 74.]
[ 125.]]
[[ 75.]
[ 126.]]
[[ 76.]
[ 128.]]
[[ 77.]
[ 129.]]
[[ 78.]
[ 131.]]
[[ 66.]
[ 133.]]
[[ 67.]
[ 134.]]
[[ 69.]
[ 135.]]
[[ 79.]
[ 136.]]
[[ 72.]
[ 137.]]
[[ 80.]
[ 139.]]
[[ 73.]
[ 140.]]
[[ 83.]
[ 141.]]
[[ 82.]
[ 142.]]
[[ 91.]
[ 143.]]
[[ 92.]
[ 144.]]
[[ 93.]
[ 145.]]
[[ 94.]
[ 146.]]
[[ 85.]
[ 147.]]
[[ 86.]
[ 148.]]
[[ 87.]
[ 149.]]
[[ 95.]
[ 150.]]
[[ 101.]
[ 153.]]
[[ 102.]
[ 154.]]
[[ 103.]
[ 155.]]
[[ 104.]
[ 156.]]
[[ 105.]
[ 157.]]
[[ 106.]
[ 158.]]
[[ 107.]
[ 159.]]
[[ 108.]
[ 160.]]
[[ 109.]
[ 161.]]
[[ 110.]
[ 163.]]
[[ 111.]
[ 164.]]
[[ 112.]
[ 165.]]
[[ 113.]
[ 166.]]
[[ 114.]
[ 167.]]
[[ 99.]
[ 168.]]
[[ 100.]
[ 169.]]
[[ 118.]
[ 171.]]
[[ 119.]
[ 172.]]
[[ 120.]
[ 173.]]
[[ 121.]
[ 174.]]
[[ 122.]
[ 175.]]
[[ 123.]
[ 176.]]
[[ 102.]
[ 177.]]
[[ 103.]
[ 178.]]
[[ 106.]
[ 180.]]
[[ 107.]
[ 181.]]
[[ 124.]
[ 182.]]
[[ 115.]
[ 183.]]
[[ 116.]
[ 184.]]
[[ 117.]
[ 187.]]
[[ 150.]
[ 188.]]
[[ 128.]
[ 192.]]
[[ 127.]
[ 194.]]
[[ 129.]
[ 197.]]
[[ 130.]
[ 198.]]
[[ 131.]
[ 199.]]
[[ 135.]
[ 200.]]
[[ 136.]
[ 201.]]
[[ 137.]
[ 202.]]
[[ 138.]
[ 203.]]
[[ 134.]
[ 204.]]
[[ 113.]
[ 205.]]
[[ 141.]
[ 206.]]
[[ 142.]
[ 207.]]
[[ 145.]
[ 208.]]
[[ 143.]
[ 212.]]
[[ 144.]
[ 213.]]
[[ 149.]
[ 214.]]
[[ 157.]
[ 216.]]
[[ 159.]
[ 218.]]
[[ 131.]
[ 220.]]
[[ 112.]
[ 221.]]
[[ 163.]
[ 223.]]
[[ 164.]
[ 224.]]
[[ 157.]
[ 228.]]]
コード
#!/usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
import cv2
import glob
# Load previously saved data
mtx = np.load('calib-matrix/mtx.npy')
dist = np.load('calib-matrix/dist.npy')
rect = (0, 0, 0, 0)
startPoint = False
endPoint = False
selectedPoint = False
def on_mouse(
event,
x,
y,
flags,
params,
):
global rect, startPoint, endPoint, selectedPoint
# get mouse click
if event == cv2.EVENT_LBUTTONDOWN:
if startPoint == True and endPoint == True:
# Resets and delete box once you are done
startPoint = False
endPoint = False
rect = (0, 0, 0, 0)
if startPoint == False:
# First click, waits for final click to create box
rect = (x, y, 0, 0)
startPoint = True
elif endPoint == False:
# creates the box (I think}
rect = (rect[0], rect[1], x, y)
print '________________'
print 'Rectangle location: ', rect[0], ' ', rect[1], ' ', \
x, ' ', y
endPoint = True
return
def drawCube(img, corners, imgpts):
imgpts = np.int32(imgpts).reshape(-1, 2)
# draw ground floor in green
img = cv2.drawContours(img, [imgpts[:4]], -1, (0, 255, 0), -3)
# draw pillars in blue color
for (i, j) in zip(range(4), range(4, 8)):
img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]), 255, 3)
# draw top layer in red color
img = cv2.drawContours(img, [imgpts[4:]], -1, (0, 0, 255), 3)
return img
def draw(img, corners, imgpts):
corner = tuple(corners[0].ravel())
img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255, 0, 0),
5)
img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0, 255, 0),
5)
img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0, 0, 255),
5)
return img
def detectAndDescribe(image):
# convert the image to grayscale
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# detect and extract features from the image
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# convert the keypoints from KeyPoint objects to NumPy
# arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return (kps, features)
def matchKeypoints(
kpsA,
kpsB,
featuresA,
featuresB,
ratio,
reprojThresh,
):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create('BruteForce')
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
match_ar = []
i = 0
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
if i == 0:
match_ar = np.array([[[m[0].trainIdx],
[m[0].queryIdx]]], dtype=np.float)
match_ar = match_ar.transpose()
match_ar = list(match_ar)
print type(match_ar)
i = i + 1
else:
m_add = np.array([[m[0].trainIdx],
[m[0].queryIdx]])[None, :]
m_add = m_add.transpose()
match_ar = np.concatenate([match_ar, m_add])
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
# return (matches, H, status)
return (matches, match_ar, H, status)
# otherwise, no homograpy could be computed
return None
def drawMatches(
imageA,
imageB,
kpsA,
kpsB,
matches,
status,
):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype='uint8')
print imageA.shape
print imageB.shape
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,
0.001)
objp = np.zeros((6 * 7, 3), np.float32)
objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2)
axis = np.float32([[3, 0, 0], [0, 3, 0], [0, 0, -3]]).reshape(-1, 3)
cubeAxis = np.float32([
[0, 0, 0],
[0, 3, 0],
[3, 3, 0],
[3, 0, 0],
[0, 0, -3],
[0, 3, -3],
[3, 3, -3],
[3, 0, -3],
])
# Here we are going to try to define our corners
#fname = 'images/left01.jpg'
fname = 'images/checkerboard4.jpg'
img = cv2.imread(fname)
cv2.namedWindow('Label')
cv2.setMouseCallback('Label', on_mouse)
'''
while 1:
if selectedPoint == True:
break
if startPoint == True and endPoint == True:
cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]),
(255, 0, 255), 2)
cv2.imshow('Label', img)
if cv2.waitKey(20) & 255 == 27:
break
cv2.destroyAllWindows()
'''
'''
reference_color = img[rect[1]:rect[3], rect[0]:rect[2]]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
reference_img = gray[rect[1]:rect[3], rect[0]:rect[2]]
'''
reference_color = img[101:400, 92:574]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
reference_img = gray[101:400, 92:574]
####### Attempting to preform homography #######
sift = cv2.xfeatures2d.SIFT_create()
(kp1, des1) = detectAndDescribe(gray)
(kp2, des2) = detectAndDescribe(reference_img)
(M, M_ar, H, status) = matchKeypoints(kp1,kp2,des1,des2,0.75,4.0,)
if M is None:
print 'No matches found'
exit()
print 'Matches found'
# vis = drawMatches(gray, reference_img, kp1, kp2, M, status)
vis = drawMatches(img,reference_color,kp1,kp2,M,status)
cv2.imshow('vis', vis)
cv2.waitKey(0)
corners2 = M_ar
if 1 == 1:
# Find the rotation and translation vectors.
print 'here'
(ret, rvecs, tvecs) = cv2.solvePnP(objp, corners2, mtx, dist)
# project 3D points to image plane
(imgpts, jac) = cv2.projectPoints(cubeAxis, rvecs, tvecs, mtx, dist)
img = drawCube(img, corners2, imgpts)
cv2.imshow('img', img)
k = cv2.waitKey(0) & 255
else:
print 'No corners were detected'