TFLearnで書かれたコードを参考にして、Kerasを使って書き直そうとしています。私は両方のパッケージにかなり新しいですし、私はそれを正しく書いたかどうかわかりません。TFLearnのコードをKerasで変換する
私は自分のコードを試してみましたが、うまくいきましたが、予想された結果が得られませんでした(精度は20 + epochs以上に改善されません)、私はどこかでミスを犯したのだろうかと思います。
私のデータに関して、私は 'train'と 'validation'ディレクトリを持つ 'data'ディレクトリを持っています。それぞれの中には、私の3つのイメージクラスのそれぞれに対応する3つのディレクトリがあります。
オリジナルTFLearnコード:Kerasを使用して
import numpy as np
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
def createModel(nbClasses,imageSize):
convnet = input_data(shape=[None, imageSize, imageSize, 1], name='input')
convnet = conv_2d(convnet, 64, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 128, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 256, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 512, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='elu')
convnet = dropout(convnet, 0.5)
convnet = fully_connected(convnet, nbClasses, activation='softmax')
convnet = regression(convnet, optimizer='rmsprop', loss='categorical_crossentropy')
model = tflearn.DNN(convnet)
return model
マイコード:
from keras import backend as K
from keras.layers.core import Flatten, Dense, Dropout, Activation
from keras.optimizers import rmsprop
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D
import numpy as np
num_classes = 3
image_size = 256
nb_epoch = 80
batch_size = 32
nb_train_samples = 7994
nb_validation_samples = 2000
if K.image_data_format() == 'channels_first':
input_shape = (3, image_size, image_size)
else:
input_shape = (image_size, image_size, 3)
model = Sequential()
model.add(ZeroPadding2D((1,1), input_shape=input_shape))
model.add(Conv2D(64, 2, activation='elu', kernel_initializer='glorot_normal'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, 2, activation='elu', kernel_initializer='glorot_normal'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(256, 2, activation='elu', kernel_initializer='glorot_normal'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(512, 2, activation='elu', kernel_initializer='glorot_normal'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('elu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
opt = rmsprop()
model.compile(loss='categorical_crossentropy',
optimizer = opt,
metrics = ['accuracy'])
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
train_datagen = ImageDataGenerator(rescale= 1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
model.fit_generator(train_generator,
steps_per_epoch=(nb_train_samples // batch_size),
epochs=nb_epoch,
validation_data=validation_generator,
validation_steps=(nb_validation_samples // batch_size)
)
model.save_weights('first_try.h5')
どのようにデータをバッチし、どのように訓練しますか?あなたのコードを追加できますか? – petezurich
私のコードの残りの部分を追加しました – Matt
私は3つのクラスのMNISTデータセットであなたのコードを試しました。予想どおり、最初のエポックで精度が向上します。少なくともMNISTの場合は、最初の2つのConvレイヤーと64のDenseレイヤーを使用するだけで、はるかに高速にトレーニングできます。データに応じて、より単純なモデル(2 Convレイヤー)を試してみてください。そこから改善する。 – petezurich