2017-08-19 5 views
0

メッシュのスケルトンが得られました。これはメッシュの向きを決定するために必要なので、自動的に3次元空間に正しく配置できます。メッシュスケルトンからのラインの中央値が最も適合

私は本当にどのように線の最良のフィットを得ることができないので、私は後に自動的にポイントのセットからそれを配置することができます。 以下は、サンプルデータの見方とサンプルデータの設定例です。

example

//skeleton vertices 

vertices = [ 2.06104, 318.734, -149.29; 
4.2207, 212.092, -145.141; 
4.23213, 200.135, -144.811; 
4.16573, 95.1567, -133.954; 
4.7053, 126.626, -138.59; 
4.16915, 171.645, -143.646; 
4.18659, 183.173, -144.185; 
4.17842, 179.964, -144.008; 
2.76537, 288.063, -147.215; 
-1.71817, 61.155, -124.25; 
-0.492168, 66.2098, -127.702; 
2.07608, 79.5012, -131.886; 
4.03249, 238.699, -146.141; 
4.23595, 206.822, -145.001; 
4.23623, 203.704, -144.908; 
4.17145, 220.543, -145.415; 
4.12453, 228.514, -145.761; 
2.41377, 301.021, -147.804; 
4.03098, 236.064, -145.985; 
2.48681, 298.432, -147.685; 
4.68192, 129.093, -138.873; 
2.65048, 292.424, -147.406; 
4.54555, 104.737, -135.116; 
-4.23707, 53.6538, -113; 
1.93508, 317.106, -148.755; 
-4.98045, 51.9036, -109.052; 
-5.87157, 49.9703, -104.104; 
-11.2433, 41.1865, -71.6569; 
-15.1283, 30.7528, -33.5845; 
-14.6647, 26.7291, -17.9213; 
-13.1176, 23.9812, -5.55431; 
-8.27057, 20.6161, 13.9826; 
-4.49387, 19.0295, 25.4537; 
4.5645, 139.344, -140.275; 
-3.3737, 56.0265, -117.133; 
4.21667, 192.056, -144.576; 
3.99948, 93.2911, -133.447; 
4.22894, 209.986, -145.081; 
4.17824, 167.633, -143.406; 
3.94993, 243.303, -146.26; 
4.20391, 188.412, -144.431; 
4.20673, 214.944, -145.239; 
3.82056, 248.85, -146.382; 
3.75634, 252.761, -146.523; 
3.46093, 268.466, -147.033; 
4.11554, 230.181, -145.836; 
4.44799, 147.962, -141.303; 
4.205, 165.551, -143.138; 
4.7514, 117.603, -137.34; 
4.25931, 161.613, -142.739; 
4.15939, 222.571, -145.502; 
4.38497, 152.519, -141.797; 
3.12906, 279.268, -147.181; 
3.05571, 282.333, -147.279; 
-8.35374, 45.7208, -89.6802; 
-6.43016, 19.7295, 20.0489; 
3.51218, 265.85, -146.95; 
4.22735, 196.569, -144.716; 
3.60114, 261.275, -146.806; 
3.87527, 245.264, -146.243; 
3.70115, 255.948, -146.633; 
3.33032, 273.433, -147.142; 
4.14712, 224.649, -145.592; 
4.11102, 231.178, -145.882; 
4.17545, 177.258, -143.86; 
4.07209, 234.491, -145.985; 
4.13698, 226.37, -145.667; 
4.50243, 144.003, -140.851; 
4.74996, 120.215, -137.661; 
3.00397, 283.765, -147.29; 
4.22263, 164.279, -143.008; 
4.19542, 216.684, -145.284; 
4.74419, 122.387, -138.079; 
4.24362, 162.754, -142.854; 
4.1921, 217.204, -145.299; 
3.1988, 276.954, -147.144; 
2.24673, 307.266, -148.14; 
4.70408, 113.726, -136.704; 
1.55558, 75.9859, -131.562; 
4.66136, 131.166, -139.157; 
3.69856, 90.4963, -133.113; 
4.42481, 149.643, -141.489; 
2.02224, 313.586, -148.445; 
3.39344, 270.742, -147.067; 
-11.4507, 40.824, -70.2682; 
-12.6325, 23.3651, -2.57932; 
-7.10479, 20.0528, 17.8335; 
-5.64725, 19.4808, 22.078; 
-4.64392, 19.0822, 25.039; 
2.02817, 318.148, -149.125; 
2.33964, 303.688, -147.933; 
3.66401, 257.998, -146.701; 
4.63971, 109.538, -135.974; 
1.92836, 315.331, -148.48; 
-14.1808, 25.5312, -12.8091; 
-9.41149, 21.1265, 10.4194; 
-4.95978, 19.1884, 24.1908; 
2.59159, 294.625, -147.508; 
2.13575, 310.184, -148.256; 
2.70921, 290.146, -147.303; 
4.27225, 160.675, -142.644; 
4.26101, 97.2627, -134.029; 
4.48821, 103.188, -134.891; 
4.49926, 103.485, -134.935; 
-7.047, 47.7435, -97.5736; 
-6.3594, 48.9598, -101.483; 
-9.77383, 43.5659, -81.0321; 
-8.9763, 44.7772, -85.911; 
-10.8234, 41.8961, -74.4074; 
-13.9937, 35.5167, -50.7962; 
-14.3038, 34.7247, -47.9571; 
-14.8257, 32.9699, -41.6747; 
-14.6745, 33.5497, -43.7501; 
-11.2159, 22.148, 3.98751; 
-11.8022, 22.5945, 1.47664; 
-8.85457, 20.8696, 12.1895; 
-10.131, 21.5096, 7.94287; 
4.63046, 134.052, -139.576; 
-10.0719, 43.1032, -79.1781; 
-10.7667, 21.8667, 5.68727; 
-12.6587, 38.5085, -61.6436; 
3.95535, 241.725, -146.174; 
-15.1097, 31.1952, -35.2305; 
-14.9267, 27.8269, -22.3608; 
-15.0656, 31.6803, -37.016; 
-9.86649, 21.3662, 8.86292; 
4.58261, 106.635, -135.457; 
-13.3958, 36.9225, -55.8701; 
-14.8467, 27.4234, -20.75; 
-9.26049, 44.3478, -84.1828; 
-9.51023, 43.9693, -82.6548; 
-13.9657, 25.1136, -10.9592; 
-14.4925, 34.1899, -46.0425; 
-10.5672, 42.3162, -76.0544; 
-11.5984, 40.5562, -69.2552; 
-0.993421, 64.013, -126.478; 
0.765767, 72.1493, -130.141; 
-2.1096, 59.7809, -122.798; 
-12.1454, 39.5104, -65.3578; 
-13.062, 37.65, -58.5144; 
-6.68714, 48.3172, -99.7383; 
4.33504, 156.127, -142.176; 
4.39741, 100.816, -134.536; 
2.55245, 82.6571, -132.286; 
-14.4223, 26.1384, -15.3963; 
-1.22434, 63.1015, -125.766; 
-4.58353, 52.82, -111.184; 
-5.20508, 51.4016, -107.822; 
1.17634, 74.0686, -130.953; 
-7.37625, 47.2239, -95.5894; 
-14.9706, 32.2558, -39.1074; 
-15.1378, 29.7063, -29.6614; 
-13.3868, 24.326, -7.21636; 
-2.6613, 58.1303, -120.338; 
-5.48993, 50.7878, -106.232; 
-15.0685, 28.7501, -25.9925; 
-13.7052, 36.2122, -53.3032; 
0.437576, 70.5848, -129.527; 
]; 

//skeleton lines 

lines = [ 
93, 24; 
56, 44; 
0, 89; 
42, 59; 
7, 64; 
17, 90; 
62, 50; 
39, 59; 
48, 77; 
3, 36; 
13, 14; 
10, 157; 
20, 79; 
19, 17; 
43, 60; 
76, 90; 
157, 136; 
4, 72; 
79, 117; 
14, 2; 
7, 6; 
40, 6; 
62, 66; 
135, 10; 
49, 73; 
38, 5; 
61, 75; 
137, 153; 
78, 148; 
2, 57; 
38, 47; 
117, 33; 
61, 83; 
35, 40; 
9, 137; 
58, 56; 
153, 34; 
1, 41; 
9, 145; 
39, 121; 
82, 98; 
25, 147; 
25, 146; 
23, 34; 
8, 99; 
23, 146; 
60, 91; 
149, 54; 
108, 27; 
156, 127; 
139, 120; 
112, 132; 
109, 110; 
150, 111; 
124, 122; 
151, 28; 
150, 124; 
155, 123; 
151, 155; 
29, 144; 
128, 123; 
114, 85; 
30, 85; 
114, 113; 
95, 115; 
115, 31; 
116, 125; 
95, 125; 
31, 86; 
55, 86; 
87, 96; 
88, 96; 
52, 53; 
1, 37; 
58, 91; 
70, 47; 
8, 69; 
5, 64; 
53, 69; 
126, 22; 
15, 50; 
45, 16; 
65, 63; 
45, 63; 
13, 37; 
141, 51; 
57, 35; 
15, 74; 
71, 74; 
48, 68; 
72, 68; 
46, 67; 
20, 4; 
70, 73; 
141, 100; 
16, 66; 
18, 12; 
52, 75; 
18, 65; 
46, 81; 
42, 43; 
121, 12; 
41, 71; 
24, 89; 
22, 103; 
77, 92; 
21, 97; 
36, 80; 
126, 92; 
21, 99; 
33, 67; 
102, 103; 
44, 83; 
76, 98; 
118, 133; 
87, 55; 
101, 3; 
51, 81; 
49, 100; 
136, 148; 
78, 11; 
142, 101; 
82, 93; 
19, 97; 
104, 140; 
140, 105; 
104, 149; 
106, 118; 
129, 107; 
106, 130; 
129, 130; 
134, 84; 
27, 84; 
138, 134; 
138, 120; 
132, 110; 
112, 111; 
116, 119; 
26, 105; 
131, 94; 
154, 147; 
54, 107; 
108, 133; 
88, 32; 
156, 109; 
135, 145; 
127, 139; 
29, 128; 
113, 119; 
28, 122; 
143, 80; 
152, 30; 
142, 102; 
144, 94; 
131, 152; 
143, 11; 
26, 154; 
]; 
+0

あなたが「完璧」だ...入力が何であるかは不明ですメッシュといくつかの測定点?変換行列を得るために2つを相関させたいのですか?そのような場合、プロットの黒い線はメッシュであり、青の点は測定された点であり、2つの間をマッピングしたいですか?また、提供されたデータがメッシュまたは測定点であるかどうかはわかりません...とにかくもう1つは欠けています... – Spektre

+0

入力はメッシュスケルトンの点で、青い点です。プロットの黒い線は、ポイントから抜け出したいもののほんの一例です。 – duufous

+1

http://doc.cgal.org/latest/Surface_mesh_skeletonization/main_image_suggestion.png - メッシュスケルトン – duufous

答えて

0

私が希望:

  1. 分割別のポリライン

    および個別のプロセスにメッシュ。したがって、点の順序を変えて、同じトポロジカルな順序にする必要があります(ポイントのシーケンスはline[]構造ではありません)。

  2. 計算|pnt[i]-sliding_average(pnt[i])|

    値がしきい値それをので、平均をスライドからあなたの距離を与えるだろう...あまりにも大きな格差あなたのポリライン場合。私はので、ここでsqrt(20)を使用閾値距離として

    sliding avg

    検出された個々のポリラインのエンド・エンドポイントを起動します。あなたのデータのために(後にする前に10ポイントを平均して10)の平均をスライディング

    は、この(赤)のように見えます(イエロー):

    threshold

  3. 後退線

    #2あなたのセットには、個々の線分が含まれている必要があります。精度を向上させるには、次/前の線分からの点を含む可能性があるので、コーナー点(ポリラインの近くの端点)を無視します。

    regressed lines

    私は最初と最後の10から10ポイントを無視することを選択しました。内側点の平均位置を計算しました。私の方向としては、外側のエンドポイントのサイズにリサイズされた内側のエンドポイントの違いを使用します。それから、回帰直線は、平均位置+/-半方向ベクトルに過ぎない。

    あなたが望む線のフィッティングや回帰は、達成したい結果の特性によって決まります。#1をカバーし、あなたのデータのための

  4. 計算交差点再構築

  5. 隣接ライン間ここ

メッシュシンプルC++コード(申し訳ありませんが、私はMATLABを使用していません)、 #2、#3は、再帰的な細分化(ポリラインの分岐)がないので、上記の記述がどのように行われるかを見ることができますオンでは不十分です。

//--------------------------------------------------------------------------- 
//skeleton vertices 
double pnt[]= 
    { 
    2.06104, 318.734, -149.29, 
    4.2207, 212.092, -145.141, 
    4.23213, 200.135, -144.811, 
    4.16573, 95.1567, -133.954, 
    4.7053, 126.626, -138.59, 
    4.16915, 171.645, -143.646, 
    4.18659, 183.173, -144.185, 
    4.17842, 179.964, -144.008, 
    2.76537, 288.063, -147.215, 
    -1.71817, 61.155, -124.25, 
    -0.492168, 66.2098, -127.702, 
    2.07608, 79.5012, -131.886, 
    4.03249, 238.699, -146.141, 
    4.23595, 206.822, -145.001, 
    4.23623, 203.704, -144.908, 
    4.17145, 220.543, -145.415, 
    4.12453, 228.514, -145.761, 
    2.41377, 301.021, -147.804, 
    4.03098, 236.064, -145.985, 
    2.48681, 298.432, -147.685, 
    4.68192, 129.093, -138.873, 
    2.65048, 292.424, -147.406, 
    4.54555, 104.737, -135.116, 
    -4.23707, 53.6538, -113, 
    1.93508, 317.106, -148.755, 
    -4.98045, 51.9036, -109.052, 
    -5.87157, 49.9703, -104.104, 
    -11.2433, 41.1865, -71.6569, 
    -15.1283, 30.7528, -33.5845, 
    -14.6647, 26.7291, -17.9213, 
    -13.1176, 23.9812, -5.55431, 
    -8.27057, 20.6161, 13.9826, 
    -4.49387, 19.0295, 25.4537, 
    4.5645, 139.344, -140.275, 
    -3.3737, 56.0265, -117.133, 
    4.21667, 192.056, -144.576, 
    3.99948, 93.2911, -133.447, 
    4.22894, 209.986, -145.081, 
    4.17824, 167.633, -143.406, 
    3.94993, 243.303, -146.26, 
    4.20391, 188.412, -144.431, 
    4.20673, 214.944, -145.239, 
    3.82056, 248.85, -146.382, 
    3.75634, 252.761, -146.523, 
    3.46093, 268.466, -147.033, 
    4.11554, 230.181, -145.836, 
    4.44799, 147.962, -141.303, 
    4.205, 165.551, -143.138, 
    4.7514, 117.603, -137.34, 
    4.25931, 161.613, -142.739, 
    4.15939, 222.571, -145.502, 
    4.38497, 152.519, -141.797, 
    3.12906, 279.268, -147.181, 
    3.05571, 282.333, -147.279, 
    -8.35374, 45.7208, -89.6802, 
    -6.43016, 19.7295, 20.0489, 
    3.51218, 265.85, -146.95, 
    4.22735, 196.569, -144.716, 
    3.60114, 261.275, -146.806, 
    3.87527, 245.264, -146.243, 
    3.70115, 255.948, -146.633, 
    3.33032, 273.433, -147.142, 
    4.14712, 224.649, -145.592, 
    4.11102, 231.178, -145.882, 
    4.17545, 177.258, -143.86, 
    4.07209, 234.491, -145.985, 
    4.13698, 226.37, -145.667, 
    4.50243, 144.003, -140.851, 
    4.74996, 120.215, -137.661, 
    3.00397, 283.765, -147.29, 
    4.22263, 164.279, -143.008, 
    4.19542, 216.684, -145.284, 
    4.74419, 122.387, -138.079, 
    4.24362, 162.754, -142.854, 
    4.1921, 217.204, -145.299, 
    3.1988, 276.954, -147.144, 
    2.24673, 307.266, -148.14, 
    4.70408, 113.726, -136.704, 
    1.55558, 75.9859, -131.562, 
    4.66136, 131.166, -139.157, 
    3.69856, 90.4963, -133.113, 
    4.42481, 149.643, -141.489, 
    2.02224, 313.586, -148.445, 
    3.39344, 270.742, -147.067, 
    -11.4507, 40.824, -70.2682, 
    -12.6325, 23.3651, -2.57932, 
    -7.10479, 20.0528, 17.8335, 
    -5.64725, 19.4808, 22.078, 
    -4.64392, 19.0822, 25.039, 
    2.02817, 318.148, -149.125, 
    2.33964, 303.688, -147.933, 
    3.66401, 257.998, -146.701, 
    4.63971, 109.538, -135.974, 
    1.92836, 315.331, -148.48, 
    -14.1808, 25.5312, -12.8091, 
    -9.41149, 21.1265, 10.4194, 
    -4.95978, 19.1884, 24.1908, 
    2.59159, 294.625, -147.508, 
    2.13575, 310.184, -148.256, 
    2.70921, 290.146, -147.303, 
    4.27225, 160.675, -142.644, 
    4.26101, 97.2627, -134.029, 
    4.48821, 103.188, -134.891, 
    4.49926, 103.485, -134.935, 
    -7.047, 47.7435, -97.5736, 
    -6.3594, 48.9598, -101.483, 
    -9.77383, 43.5659, -81.0321, 
    -8.9763, 44.7772, -85.911, 
    -10.8234, 41.8961, -74.4074, 
    -13.9937, 35.5167, -50.7962, 
    -14.3038, 34.7247, -47.9571, 
    -14.8257, 32.9699, -41.6747, 
    -14.6745, 33.5497, -43.7501, 
    -11.2159, 22.148, 3.98751, 
    -11.8022, 22.5945, 1.47664, 
    -8.85457, 20.8696, 12.1895, 
    -10.131, 21.5096, 7.94287, 
    4.63046, 134.052, -139.576, 
    -10.0719, 43.1032, -79.1781, 
    -10.7667, 21.8667, 5.68727, 
    -12.6587, 38.5085, -61.6436, 
    3.95535, 241.725, -146.174, 
    -15.1097, 31.1952, -35.2305, 
    -14.9267, 27.8269, -22.3608, 
    -15.0656, 31.6803, -37.016, 
    -9.86649, 21.3662, 8.86292, 
    4.58261, 106.635, -135.457, 
    -13.3958, 36.9225, -55.8701, 
    -14.8467, 27.4234, -20.75, 
    -9.26049, 44.3478, -84.1828, 
    -9.51023, 43.9693, -82.6548, 
    -13.9657, 25.1136, -10.9592, 
    -14.4925, 34.1899, -46.0425, 
    -10.5672, 42.3162, -76.0544, 
    -11.5984, 40.5562, -69.2552, 
    -0.993421, 64.013, -126.478, 
    0.765767, 72.1493, -130.141, 
    -2.1096, 59.7809, -122.798, 
    -12.1454, 39.5104, -65.3578, 
    -13.062, 37.65, -58.5144, 
    -6.68714, 48.3172, -99.7383, 
    4.33504, 156.127, -142.176, 
    4.39741, 100.816, -134.536, 
    2.55245, 82.6571, -132.286, 
    -14.4223, 26.1384, -15.3963, 
    -1.22434, 63.1015, -125.766, 
    -4.58353, 52.82, -111.184, 
    -5.20508, 51.4016, -107.822, 
    1.17634, 74.0686, -130.953, 
    -7.37625, 47.2239, -95.5894, 
    -14.9706, 32.2558, -39.1074, 
    -15.1378, 29.7063, -29.6614, 
    -13.3868, 24.326, -7.21636, 
    -2.6613, 58.1303, -120.338, 
    -5.48993, 50.7878, -106.232, 
    -15.0685, 28.7501, -25.9925, 
    -13.7052, 36.2122, -53.3032, 
    0.437576, 70.5848, -129.527, 
    }; 
const int pnts3=sizeof(pnt)/sizeof(pnt[1]); // number of points * 3 
const int pnts=pnts3/3;      // number of points 

//skeleton lines 
int lin[]= 
    { 
    93, 24, 
    56, 44, 
    0, 89, 
    42, 59, 
    7, 64, 
    17, 90, 
    62, 50, 
    39, 59, 
    48, 77, 
    3, 36, 
    13, 14, 
    10, 157, 
    20, 79, 
    19, 17, 
    43, 60, 
    76, 90, 
    157, 136, 
    4, 72, 
    79, 117, 
    14, 2, 
    7, 6, 
    40, 6, 
    62, 66, 
    135, 10, 
    49, 73, 
    38, 5, 
    61, 75, 
    137, 153, 
    78, 148, 
    2, 57, 
    38, 47, 
    117, 33, 
    61, 83, 
    35, 40, 
    9, 137, 
    58, 56, 
    153, 34, 
    1, 41, 
    9, 145, 
    39, 121, 
    82, 98, 
    25, 147, 
    25, 146, 
    23, 34, 
    8, 99, 
    23, 146, 
    60, 91, 
    149, 54, 
    108, 27, 
    156, 127, 
    139, 120, 
    112, 132, 
    109, 110, 
    150, 111, 
    124, 122, 
    151, 28, 
    150, 124, 
    155, 123, 
    151, 155, 
    29, 144, 
    128, 123, 
    114, 85, 
    30, 85, 
    114, 113, 
    95, 115, 
    115, 31, 
    116, 125, 
    95, 125, 
    31, 86, 
    55, 86, 
    87, 96, 
    88, 96, 
    52, 53, 
    1, 37, 
    58, 91, 
    70, 47, 
    8, 69, 
    5, 64, 
    53, 69, 
    126, 22, 
    15, 50, 
    45, 16, 
    65, 63, 
    45, 63, 
    13, 37, 
    141, 51, 
    57, 35, 
    15, 74, 
    71, 74, 
    48, 68, 
    72, 68, 
    46, 67, 
    20, 4, 
    70, 73, 
    141, 100, 
    16, 66, 
    18, 12, 
    52, 75, 
    18, 65, 
    46, 81, 
    42, 43, 
    121, 12, 
    41, 71, 
    24, 89, 
    22, 103, 
    77, 92, 
    21, 97, 
    36, 80, 
    126, 92, 
    21, 99, 
    33, 67, 
    102, 103, 
    44, 83, 
    76, 98, 
    118, 133, 
    87, 55, 
    101, 3, 
    51, 81, 
    49, 100, 
    136, 148, 
    78, 11, 
    142, 101, 
    82, 93, 
    19, 97, 
    104, 140, 
    140, 105, 
    104, 149, 
    106, 118, 
    129, 107, 
    106, 130, 
    129, 130, 
    134, 84, 
    27, 84, 
    138, 134, 
    138, 120, 
    132, 110, 
    112, 111, 
    116, 119, 
    26, 105, 
    131, 94, 
    154, 147, 
    54, 107, 
    108, 133, 
    88, 32, 
    156, 109, 
    135, 145, 
    127, 139, 
    29, 128, 
    113, 119, 
    28, 122, 
    143, 80, 
    152, 30, 
    142, 102, 
    144, 94, 
    131, 152, 
    143, 11, 
    26, 154, 
    }; 
const int lins2=sizeof(lin)/sizeof(lin[1]); // number of lines * 2 
const int lins=lins2/2;      // number of lines 
//--------------------------------------------------------------------------- 
int pol[pnts],pols=0; // polyline 
double avg[pnts3];  // sliding average 
//--------------------------------------------------------------------------- 
const int _mesh=100; 
double mesh[_mesh*3]; 
int meshs=0,meshs3=0; 
//--------------------------------------------------------------------------- 
void compute() 
    { 
    int i,j,e,n,i0,i1; 
    int his[pnts]; 
    int used[lins]; 
    double x,y,z,w,rr,ll; 
    //--- compute polyline pol[pols] ---------------------------------------- 
    // histogram of point usagge 
    for (i=0;i<pnts;i++) his[i]=0; 
    for (i=0;i<lins2;i++) his[lin[i]]++; 
    // clear tables 
    for (i=0;i<pnts;i++) pol[i]=-1; pols=0; 
    for (i=0;i<lins;i++) used[i]=0; 
    // find start point (his[i]!=2) 
    for (e=1,i=0;i<pnts;i++) 
    if ((his[i])&&(his[i]!=2)) 
     { e=0; break; } 
    if (e) return; // stop if none found 
    // add start point to polyline 
    pol[pols]=i; pols++; 
    // process polyline 
    for (e=1;e;) 
    for (e=0,j=0;j<lins;j++) 
    if (!used[j]) // ignore used lines 
     { 
     // is point i in line j ? 
      if (lin[j+j+0]==i) i=lin[j+j+1]; 
     else if (lin[j+j+1]==i) i=lin[j+j+0]; 
     else continue; 
     // add next point to polyline 
     pol[pols]=i; pols++; 
     used[j]=1; 
     if (his[i]==2) e=1; // loop if not end of polyline 
     break; 
     } 
    //--- compute sliding average ------------------------------------------- 
    n=10; // sliding average half interval [poins] 
    w=1+n+n; w=1.0/w; 
    for (i=0;i<pols;i++) 
     { 
     e=3*pol[i]; 
     x=pnt[e]; e++; 
     y=pnt[e]; e++; 
     z=pnt[e]; e++; 
     for (j=1;j<=n;j++) 
      { 
      e=i+j; if (e>=pols) e=pols-1; 
      e=3*pol[e]; 
      x+=pnt[e]; e++; 
      y+=pnt[e]; e++; 
      z+=pnt[e]; e++; 
      e=i-j; if (e<0) e=0; 
      e=3*pol[e]; 
      x+=pnt[e]; e++; 
      y+=pnt[e]; e++; 
      z+=pnt[e]; e++; 
      } 
     e=3*i; 
     avg[e]=x*w; e++; 
     avg[e]=y*w; e++; 
     avg[e]=z*w; e++; 
     } 
    //--- regress lines ----------------------------------------------------- 
    meshs=0; meshs3=0; 
    ll=20.0; 
    for (e=0,i=0;i<pols;i++) 
     { 
     // distance to sliding average 
     j=3*pol[i]; 
     x=pnt[j]; j++; 
     y=pnt[j]; j++; 
     z=pnt[j]; j++; 
     j=3*i; 
     x-=avg[j]; j++; x*=x; 
     y-=avg[j]; j++; y*=y; 
     z-=avg[j]; j++; z*=z; 
     rr=x+y+z; 
      if ((e==0)&&(rr<=ll)){ i0=i; e++; }// find start point 
     else if ((e==1)&&(rr> ll))    // find end point 
      { 
      i1=i-1; e=0; if (i0==i1) continue; 
      // regress line from pol[i0..i1] 
      int j0,j1; 
      double dx,dy,dz; 
      // ignore n edge points 
      n=10; while ((i1-i0)<(n<<2)) n--; 
      j0=i0+n; 
      j1=i1-n; 
      // direction 
      j=3*pol[j1]; 
      dx=pnt[j]; j++; 
      dy=pnt[j]; j++; 
      dz=pnt[j]; j++; 
      j=3*pol[j0]; 
      dx-=pnt[j]; j++; 
      dy-=pnt[j]; j++; 
      dz-=pnt[j]; j++; 
      // original line size 
      j=3*pol[i1]; 
      x=pnt[j]; j++; 
      y=pnt[j]; j++; 
      z=pnt[j]; j++; 
      j=3*pol[i0]; 
      x-=pnt[j]; j++; 
      y-=pnt[j]; j++; 
      z-=pnt[j]; j++; 
      // rescale direction to match original half size 
      rr=sqrt((x*x)+(y*y)+(z*z)); 
      rr=divide(rr,sqrt((dx*dx)+(dy*dy)+(dz*dz))); 
      rr*=0.5; 
      dx*=rr; 
      dy*=rr; 
      dz*=rr; 
      // avg position 
      for (x=y=z=0.0,n=0,i=j0;i<=j1;i++) 
       { 
       j=3*pol[i]; 
       x+=pnt[j]; j++; 
       y+=pnt[j]; j++; 
       z+=pnt[j]; j++; 
       n++; 
       } 
      x/=n; 
      y/=n; 
      z/=n; 
      // line is avg+/-half direction 
      mesh[meshs3]=x-dx; meshs3++; meshs++; 
      mesh[meshs3]=y-dy; meshs3++; 
      mesh[meshs3]=z-dz; meshs3++; 
      mesh[meshs3]=x+dx; meshs3++; meshs++; 
      mesh[meshs3]=y+dy; meshs3++; 
      mesh[meshs3]=z+dz; meshs3++; 
      // restore main loop 
      i=i1+1; e=0; 
      } 
     } 
    i=0; 
    } 
//--------------------------------------------------------------------------- 

mesh[meshs3]は、得られたポリライン(行につき2ポイント)meshs3Dポイントの座標を保持しているポイント数はそれほどnum_of_lines=meshs/2

関連する問題