私はPythonでkNN(k-nearest neighbor)アルゴリズムを実行しようとしています。列テストの分割はPythonでは正しく動作していないようですか?
私がしようとすると、これはUCI機械学習リポジトリで利用できる行うために使用していたデータセット:ここ
https://archive.ics.uci.edu/ml/datasets/wineは、私が使用していたコードです:
セクション5では#1. LIBRARIES
import os
import pandas as pd
import numpy as np
print os.getcwd() # Prints the working directory
os.chdir('C:\\file_path') # Provide the path here
#2. VARIABLES
variables = pd.read_csv('wines.csv')
winery = variables['winery']
alcohol = variables['alcohol']
malic = variables['malic']
ash = variables['ash']
ash_alcalinity = variables['ash_alcalinity']
magnesium = variables['magnesium']
phenols = variables['phenols']
flavanoids = variables['flavanoids']
nonflavanoids = variables['nonflavanoids']
proanthocyanins = variables['proanthocyanins']
color_intensity = variables['color_intensity']
hue = variables['hue']
od280 = variables['od280']
proline = variables['proline']
#3. MAX-MIN NORMALIZATION
alcoholscaled=(alcohol-min(alcohol))/(max(alcohol)-min(alcohol))
malicscaled=(malic-min(malic))/(max(malic)-min(malic))
ashscaled=(ash-min(ash))/(max(ash)-min(ash))
ash_alcalinity_scaled=(ash_alcalinity-min(ash_alcalinity))/(max(ash_alcalinity)-min(ash_alcalinity))
magnesiumscaled=(magnesium-min(magnesium))/(max(magnesium)-min(magnesium))
phenolsscaled=(phenols-min(phenols))/(max(phenols)-min(phenols))
flavanoidsscaled=(flavanoids-min(flavanoids))/(max(flavanoids)-min(flavanoids))
nonflavanoidsscaled=(nonflavanoids-min(nonflavanoids))/(max(nonflavanoids)-min(nonflavanoids))
proanthocyaninsscaled=(proanthocyanins-min(proanthocyanins))/(max(proanthocyanins)-min(proanthocyanins))
color_intensity_scaled=(color_intensity-min(color_intensity))/(max(color_intensity)-min(color_intensity))
huescaled=(hue-min(hue))/(max(hue)-min(hue))
od280scaled=(od280-min(od280))/(max(od280)-min(od280))
prolinescaled=(proline-min(proline))/(max(proline)-min(proline))
alcoholscaled.mean()
alcoholscaled.median()
alcoholscaled.min()
alcoholscaled.max()
#4. DATA FRAME
d = {'alcoholscaled' : pd.Series([alcoholscaled]),
'malicscaled' : pd.Series([malicscaled]),
'ashscaled' : pd.Series([ashscaled]),
'ash_alcalinity_scaled' : pd.Series([ash_alcalinity_scaled]),
'magnesiumscaled' : pd.Series([magnesiumscaled]),
'phenolsscaled' : pd.Series([phenolsscaled]),
'flavanoidsscaled' : pd.Series([flavanoidsscaled]),
'nonflavanoidsscaled' : pd.Series([nonflavanoidsscaled]),
'proanthocyaninsscaled' : pd.Series([proanthocyaninsscaled]),
'color_intensity_scaled' : pd.Series([color_intensity_scaled]),
'hue_scaled' : pd.Series([huescaled]),
'od280scaled' : pd.Series([od280scaled]),
'prolinescaled' : pd.Series([prolinescaled])}
df = pd.DataFrame(d)
#5. TRAIN-TEST SPLIT
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(np.matrix(df),np.matrix(winery),test_size=0.3)
print X_train.shape, y_train.shape
print X_test.shape, y_test.shape
#6. K-NEAREST NEIGHBOUR ALGORITHM
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X_train, y_train)
print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))
、私は実行列車テストの分割メカニズムをインポートするにはsklearn.model_selectionを使用しますが、形状が提供されているため正しく実行されていません。(0,13) (0,178) (1,13) (1,178)
次に、knnを実行しようとすると、エラーメッセージが表示されます。Found array with 0 sample(s) (shape=(0,13)) while a minimum of 1 is required.
これは、変数がスケーリングされていない場合でもこのエラーメッセージが表示されるため、max-min正規化によるスケーリングによるものではありません。
たぶん 'test_train_splitは()' 'numpy.ndarray'ない' numpy.matrixlib.defmatrix.matrix' – cardamom
感謝を望んでいます。ワインのデータセットをインポートしようとすると、「名前を読み込めません」というエラーが表示されます。私はload_irisでこれをやろうとしましたが、knn.fitを実行しても問題はありませんでした。その特定のデータセットにエラーがあると思っています。手動でインポートしようとすると、別のファイルタイプになります。 – empoleon
@cardamom:最初にデータフレームを生成したときの形式は、pandas.core.frame.DataFrameでした。問題がこの原因かどうかはわかりません。 – empoleon