ここでは、逆伝播を伴う1つの隠れ層ネットワークがあります。これは、relu、sigmoid、およびその他のアクティブ化を使用して実験を実行するようにカスタマイズできます。いくつかの実験の後に、reluでネットワークがより良好に実行され、収束に早く到達し、シグモイドでは損失値が変動すると結論付けられた。これは、 "the gradient of sigmoids becomes increasingly small as the absolute value of x increases"が原因で発生します。
import numpy as np
import matplotlib.pyplot as plt
from operator import xor
class neuralNetwork():
def __init__(self):
# Define hyperparameters
self.noOfInputLayers = 2
self.noOfOutputLayers = 1
self.noOfHiddenLayerNeurons = 2
# Define weights
self.W1 = np.random.rand(self.noOfInputLayers,self.noOfHiddenLayerNeurons)
self.W2 = np.random.rand(self.noOfHiddenLayerNeurons,self.noOfOutputLayers)
def relu(self,z):
return np.maximum(0,z)
def sigmoid(self,z):
return 1/(1+np.exp(-z))
def forward (self,X):
self.z2 = np.dot(X,self.W1)
self.a2 = self.relu(self.z2)
self.z3 = np.dot(self.a2,self.W2)
yHat = self.relu(self.z3)
return yHat
def costFunction(self, X, y):
#Compute cost for given X,y, use weights already stored in class.
self.yHat = self.forward(X)
J = 0.5*sum((y-self.yHat)**2)
return J
def costFunctionPrime(self,X,y):
# Compute derivative with respect to W1 and W2
delta3 = np.multiply(-(y-self.yHat),self.sigmoid(self.z3))
djw2 = np.dot(self.a2.T, delta3)
delta2 = np.dot(delta3,self.W2.T)*self.sigmoid(self.z2)
djw1 = np.dot(X.T,delta2)
return djw1,djw2
if __name__ == "__main__":
EPOCHS = 6000
SCALAR = 0.01
nn= neuralNetwork()
COST_LIST = []
inputs = [ np.array([[0,0]]), np.array([[0,1]]), np.array([[1,0]]), np.array([[1,1]])]
for epoch in xrange(1,EPOCHS):
cost = 0
for i in inputs:
X = i #inputs
y = xor(X[0][0],X[0][1])
cost += nn.costFunction(X,y)[0]
djw1,djw2 = nn.costFunctionPrime(X,y)
nn.W1 = nn.W1 - SCALAR*djw1
nn.W2 = nn.W2 - SCALAR*djw2
COST_LIST.append(cost)
plt.plot(np.arange(1,EPOCHS),COST_LIST)
plt.ylim(0,1)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title(str('Epochs: '+str(EPOCHS)+', Scalar: '+str(SCALAR)))
plt.show()
inputs = [ np.array([[0,0]]), np.array([[0,1]]), np.array([[1,0]]), np.array([[1,1]])]
print "X\ty\ty_hat"
for inp in inputs:
print (inp[0][0],inp[0][1]),"\t",xor(inp[0][0],inp[0][1]),"\t",round(nn.forward(inp)[0][0],4)
最終結果:
X y y_hat
(0, 0) 0 0.0
(0, 1) 1 0.9997
(1, 0) 1 0.9997
(1, 1) 0 0.0005
トレーニングの後に得られた重みがあった。
nn.w1
[ [-0.81781753 0.71323677]
[ 0.48803631 -0.71286155] ]
nn.w2
[ [ 2.04849235]
[ 1.40170791] ]
私は、ニューラルネットを理解するため、以下のユーチューブシリーズが非常に役に立った:少しだけあり
Neural networks demystified
私が知っているし、またそれがこの回答に説明することができました。神経回路網をよりよく理解したい場合は、次のリンクを参照することをお勧めします。[cs231n:1つのニューロンをモデル化する] [4]
バイアスを使用しないでください。 – Macko
コスト関数はどのように計算されますか?単一のサンプルトレーニングのために?出力ニューロンのみが関与していますか? – Macko