2017-08-07 9 views
1

私はUbuntu 14.04でAffectiva https://developer.affectiva.com/の無料感情認識バージョンのプロジェクトを持っています。 私はKinect v1をAffectivaの入力デバイスとして使用しようとしています。 kinect v1のIDがBus 003のデバイス009:ID 045e:02ae Microsoft Corp.のXbox NUI Camera。aff intx cameraId = 045e:02aeをaffdex-sdk/CameraDetector.hおよびbuild/opencvで修正しようとしています-webcam-demo。 Kinect v1に接続できます

#pragma once 
#include <memory> 
#include "FrameDetector.h" 

namespace affdex 
{ 
    // Forward Declarations 
    class Camera; 

    /// <summary> 
    /// A detector used to acquire and process frames from a physical camera. 
    /// </summary> 
    class CameraDetector : public FrameDetector 
    { 
    public: 

     /// <summary> 
     /// Creates a CameraDetector. 
     /// This class acquires the device camera and will immediately start processing frames from the camera feed. 
     /// Processing is asynchronous so some frames may be dropped. 
     /// <param name="cameraId">Device id for the camera. </param> 
     /// <param name="cameraFPS">Capture framerate from the camera. Must be positive.</param> 
     /// <param name="processFPS">Maximum framerate from processing. Must be positive.</param> 
     /// <param name="maxNumFaces">The max number of faces to be tracked.</param> 
     /// <param name="faceConfig">Maximum processing framerate.</param> 
     /// </summary> 
     AFFDEXSDK CameraDetector(const int cameraId = 045e:02ae, const double cameraFPS =20 , 
           const double processFPS = DEFAULT_PROCESSING_FRAMERATE, 
           const unsigned int maxNumFaces = DEFAULT_MAX_NUM_FACES, 
           const FaceDetectorMode faceConfig = affdex::FaceDetectorMode::LARGE_FACES); 

     /// <summary> 
     /// Finalizes an instance of the <see cref="CameraDetector"/> class. 
     /// </summary> 
     AFFDEXSDK virtual ~CameraDetector() override; 

     /// <summary> 
     /// Initializes the CameraDetector and starts producing frames and results immediately. 
     /// </summary> 
     AFFDEXSDK virtual void start() override; 

     /// <summary> 
     /// Notifies the CameraDetector to stop processing frames. Immediately stops processing. 
     /// </summary> 
     AFFDEXSDK virtual void stop() override; 

     /// <summary> 
     /// Set/reset the camera framerate. Must be positive. 
     /// <param name="cameraFPS">Capture framerate from the camera. Must be positive.</param> 
     /// <exception cref="AffdexException"> AffdexException on an invalid FPS value </exception> 
     /// </summary> 
     AFFDEXSDK void setCameraFPS(const double cameraFPS); 

     /// <summary> 
     /// Set/reset the camera id. Must be positive. 
     /// <param name="cameraId">Device id for the camera. </param> 
     /// <exception cref="AffdexException"> AffdexException on an invalid value </exception> 
     /// </summary> 
     AFFDEXSDK void setCameraId(const int cameraId); 

    private: 

     /// Masking the parent FrameDetector's process command. 
     using FrameDetector::process; 
     void onException(AffdexException); 

     std::shared_ptr<Camera> mCam; 
    }; 
} 

および変更のconst int型cameraId = 045e:SDK-サンプル上02ae/OpenCVの - ウェブカメラ - demo.cpp

#include <iostream> 
#include <cstdio> 
#include <string> 
#include <cstdlib> 
#include <memory> 
#include <chrono> 
#include <fstream> 
#include <boost/filesystem.hpp> 
#include <boost/timer/timer.hpp> 
#include <boost/program_options.hpp> 
#include <boost/algorithm/string.hpp> 

#include "Frame.h" 
#include "Face.h" 
#include "FrameDetector.h" 
#include "AffdexException.h" 
#include "ImageListener.h" 
#include "FaceListener.h" 

#include "AFaceListener.hpp" 
#include "PlottingImageListener.hpp" 
#include "StatusListener.hpp" 

using namespace std; 
using namespace affdex; 

/// <summary> 
/// Project for demoing the Windows SDK CameraDetector class (grabbing and processing frames from the camera). 
/// </summary> 

//PlottingImageListener emotionlist; 

int main(int argsc, char ** argsv) 
{ 

    namespace po = boost::program_options; // abbreviate namespace 

    std::cerr << "Hit ESCAPE key to exit app.." << endl; 
    shared_ptr<FrameDetector> frameDetector; 

    affdex::Emotions EmoXX; 


    try{ 

     const std::vector<int> DEFAULT_RESOLUTION{ 640, 480 }; 

     affdex::path DATA_FOLDER; 

     std::vector<int> resolution; 
     int process_framerate = 30; 
     int camera_framerate = 15; 
     int buffer_length = 2; 
     int camera_id = 045e:02ae; 
     unsigned int nFaces = 1; 
     bool draw_display = true; 
     int faceDetectorMode = (int)FaceDetectorMode::LARGE_FACES; 

     float last_timestamp = -1.0f; 
     float capture_fps = -1.0f; 

     const int precision = 2; 
     std::cerr.precision(precision); 
     std::cout.precision(precision); 

     po::options_description description("Project for demoing the Affdex SDK CameraDetector class (grabbing and processing frames from the camera)."); 
     description.add_options() 
      ("help,h", po::bool_switch()->default_value(false), "Display this help message.") 
#ifdef _WIN32 
      ("data,d", po::wvalue<affdex::path>(&DATA_FOLDER)->default_value(affdex::path(L"data"), std::string("data")), "Path to the data folder") 
#else // _WIN32 
      ("data,d", po::value<affdex::path>(&DATA_FOLDER)->default_value(affdex::path("data"), std::string("data")), "Path to the data folder") 
#endif // _WIN32 
      ("resolution,r", po::value< std::vector<int> >(&resolution)->default_value(DEFAULT_RESOLUTION, "640 480")->multitoken(), "Resolution in pixels (2-values): width height") 
      ("pfps", po::value<int>(&process_framerate)->default_value(30), "Processing framerate.") 
      ("cfps", po::value<int>(&camera_framerate)->default_value(30), "Camera capture framerate.") 
      ("bufferLen", po::value<int>(&buffer_length)->default_value(30), "process buffer size.") 
      ("cid", po::value<int>(&camera_id)->default_value(0), "Camera ID.") 
      ("faceMode", po::value<int>(&faceDetectorMode)->default_value((int)FaceDetectorMode::LARGE_FACES), "Face detector mode (large faces vs small faces).") 
      ("numFaces", po::value< unsigned int >(&nFaces)->default_value(1), "Number of faces to be tracked.") 
      ("draw", po::value<bool>(&draw_display)->default_value(true), "Draw metrics on screen.") 
      ; 
     po::variables_map args; 
     try 
     { 
      po::store(po::command_line_parser(argsc, argsv).options(description).run(), args); 
      if (args["help"].as<bool>()) 
      { 
       std::cout << description << std::endl; 
       return 0; 
      } 
      po::notify(args); 
     } 
     catch (po::error& e) 
     { 
      std::cerr << "ERROR: " << e.what() << std::endl << std::endl; 
      std::cerr << "For help, use the -h option." << std::endl << std::endl; 
      return 1; 
     } 

     if (!boost::filesystem::exists(DATA_FOLDER)) 
     { 
      std::cerr << "Folder doesn't exist: " << std::string(DATA_FOLDER.begin(), DATA_FOLDER.end()) << std::endl << std::endl;; 
      std::cerr << "Try specifying the folder through the command line" << std::endl; 
      std::cerr << description << std::endl; 
      return 1; 
     } 
     if (resolution.size() != 2) 
     { 
      std::cerr << "Only two numbers must be specified for resolution." << std::endl; 
      return 1; 
     } 
     else if (resolution[0] <= 0 || resolution[1] <= 0) 
     { 
      std::cerr << "Resolutions must be positive number." << std::endl; 
      return 1; 
     } 

     std::ofstream csvFileStream; 

     std::cerr << "Initializing Affdex FrameDetector" << endl; 
     shared_ptr<FaceListener> faceListenPtr(new AFaceListener()); 
     shared_ptr<PlottingImageListener> listenPtr(new PlottingImageListener(csvFileStream, draw_display)); // Instanciate the ImageListener class 
     shared_ptr<StatusListener> videoListenPtr(new StatusListener()); 
     frameDetector = make_shared<FrameDetector>(buffer_length, process_framerate, nFaces, (affdex::FaceDetectorMode) faceDetectorMode);  // Init the FrameDetector Class 

     //Initialize detectors 
     frameDetector->setDetectAllEmotions(true); 
     frameDetector->setDetectAllExpressions(true); 
     frameDetector->setDetectAllEmojis(true); 
     frameDetector->setDetectAllAppearances(true); 
     frameDetector->setClassifierPath(DATA_FOLDER); 
     frameDetector->setImageListener(listenPtr.get()); 
     frameDetector->setFaceListener(faceListenPtr.get()); 
     frameDetector->setProcessStatusListener(videoListenPtr.get()); 

     cv::VideoCapture webcam(camera_id); //Connect to the first webcam 
     webcam.set(CV_CAP_PROP_FPS, camera_framerate); //Set webcam framerate. 
     webcam.set(CV_CAP_PROP_FRAME_WIDTH, resolution[0]); 
     webcam.set(CV_CAP_PROP_FRAME_HEIGHT, resolution[1]); 
     std::cerr << "Setting the webcam frame rate to: " << camera_framerate << std::endl; 
     auto start_time = std::chrono::system_clock::now(); 
     if (!webcam.isOpened()) 
     { 
      std::cerr << "Error opening webcam!" << std::endl; 
      return 1; 
     } 

     std::cout << "Max num of faces set to: " << frameDetector->getMaxNumberFaces() << std::endl; 
     std::string mode; 
     switch (frameDetector->getFaceDetectorMode()) 
     { 
     case FaceDetectorMode::LARGE_FACES: 
      mode = "LARGE_FACES"; 
      break; 
     case FaceDetectorMode::SMALL_FACES: 
      mode = "SMALL_FACES"; 
      break; 
     default: 
      break; 
     } 
     std::cout << "Face detector mode set to: " << mode << std::endl; 

     //Start the frame detector thread. 
     frameDetector->start(); 

     do{ 
      cv::Mat img; 
      if (!webcam.read(img)) //Capture an image from the camera 
      { 
       std::cerr << "Failed to read frame from webcam! " << std::endl; 
       break; 
      } 

      //Calculate the Image timestamp and the capture frame rate; 
      const auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - start_time); 
      const double seconds = milliseconds.count()/1000.f; 

      // Create a frame 
      Frame f(img.size().width, img.size().height, img.data, Frame::COLOR_FORMAT::BGR, seconds); 
      capture_fps = 1.0f/(seconds - last_timestamp); 
      last_timestamp = seconds; 
      frameDetector->process(f); //Pass the frame to detector 

      // For each frame processed 
      if (listenPtr->getDataSize() > 0) 
      { 

       std::pair<Frame, std::map<FaceId, Face> > dataPoint = listenPtr->getData(); 
       Frame frame = dataPoint.first; 
       std::map<FaceId, Face> faces = dataPoint.second; 

       // Draw metrics to the GUI 
       if (draw_display) 
       { 
        listenPtr->draw(faces, frame); 
       } 

       std::cerr << "timestamp: " << frame.getTimestamp() 
        << " cfps: " << listenPtr->getCaptureFrameRate() 
        << " pfps: " << listenPtr->getProcessingFrameRate() 
        << " faces: " << faces.size() <<endl; 
      //<<listenPtr->emotiontype 
      //<< " Value = " << listenPtr->emotionlist<<endl 
      //<< listenPtr->*values <<endl; 

      //if(EmoXX.joy == 0){ 
      // cout << "Emotion = JOY\n"; 
      // emo.joy = 100; 
      // }; 
       //Output metrics to the file 
       listenPtr->outputToFile(faces, frame.getTimestamp()); 
     //cout << "Joy Value = " << listenPtr -> <<"\n"; 
      } 


     } 

#ifdef _WIN32 
     while (!GetAsyncKeyState(VK_ESCAPE) && videoListenPtr->isRunning()); 
#else // _WIN32 
     while (videoListenPtr->isRunning());//(cv::waitKey(20) != -1); 
#endif 
     std::cerr << "Stopping FrameDetector Thread" << endl; 
     frameDetector->stop(); //Stop frame detector thread 
    } 
    catch (AffdexException ex) 
    { 
     std::cerr << "Encountered an AffdexException " << ex.what(); 
     return 1; 
    } 
    catch (std::runtime_error err) 
    { 
     std::cerr << "Encountered a runtime error " << err.what(); 
     return 1; 
    } 
    catch (std::exception ex) 
    { 
     std::cerr << "Encountered an exception " << ex.what(); 
     return 1; 
    } 
    catch (...) 
    { 
     std::cerr << "Encountered an unhandled exception "; 
     return 1; 
    } 

    return 0; 
} 

、まだKinectのV1に接続できませんでしたデモプログラムを実行していますopencv-webcam-demo kinect v1をAffectivaの入力として使用する方法はありますか?

+0

AffectivaはKinectとは何の関係もなく、KinectやCameraに接続するようには設計されていません。有効なフレームをAffectivaに渡し、Affectivaにそのフレームを処理させる – Asesh

答えて

0

現在、KinectプラットフォームをサポートするSDKはありません。

関連する問題