2017-10-02 9 views
0

私は以下の2つのデータセットを持っています。複数変数の日々の平均変化の著しい変化

head(CDS_bond_basis) 
     Dates CDS  Bond Swap zero rate CDS-bond basis    Bank 
1 2015-01-22 124.50 194.7738   31.10  -39.17377 AIB Group UK PLC 
2 2015-01-23 124.41 185.0195   27.20  -33.40953 AIB Group UK PLC 
3 2015-01-26 124.41 184.3250   31.50  -28.41500 AIB Group UK PLC 
4 2015-01-27 124.41 184.2980   30.90  -28.98801 AIB Group UK PLC 
5 2015-01-28 124.41 184.7475   27.45  -32.88754 AIB Group UK PLC 
6 2015-01-29 124.41 186.9114   32.05  -30.45136 AIB Group UK PLC 

重要な部分は、列CDS結合単位である: 最初のものは、以下のように見えるリストです。単にデータセットが時間02.01.2007-30.12.2016にわたって25個の異なるバンクの45078件のエントリが含まれ、この式

CDS-(ボンド・スワップゼロ速度)

によって計算されます。

head(RatingDowngradesFinal_) 
       Bank  Dates Rating agency New rating Previous rating State 
1 ABN AMRO Bank NV 2016-02-17  Moody's   WR    Ba1 NL 
2 ABN AMRO Bank NV 2015-09-29   DBRS   A   AH *- NL 
3 ABN AMRO Bank NV 2015-05-20   DBRS  AH *-    AH NL 
4 ABN AMRO Bank NV 2015-05-20   DBRS  AL *-    AL NL 
5 ABN AMRO Bank NV 2015-05-19   Fitch   A    A+ NL 
6 ABN AMRO Bank NV 2015-05-19   Fitch   A    A+ NL 

このデータセットは、時間にわたる格下げについての情報が含まれています。次のように

第二のデータセットが見えます。私は3つの別々の区間に全体の時間を分割したいすべての

まず:

1. 02.01.2007-31.12.2009 

2. 01.01.2010-31.12.2012 

3. 01.01.2013-30.12.2016 

その後、私は変数の平均の日々の変化を要約したいと思います:、CDSをボンド、ゼロ金利を交換し、ここ>

1. [-30,-1] 

2. [1,30] 

3. [31,60] 

4. [61,90] 

5. [-1,1] 

6. [1,10] 

、例えば[-30、-1]ダウングレードする前に、30日と1日bewteen時間間隔を表し、[1,10] - CDSボンド以下の時間間隔 上の基礎を1日後〜10日後の間隔を表しますダウングレード。 したがって、銀行は両方のデータセットで同じでなければなりません - > AIBグループ英国PLC = AIBグループ英国PLC。

もう1つの問題は、データセットが営業日のみで構成されているため、5日ごとに週末のため2日間が欠落していることです。

は、事前にご協力いただきありがとうござい ラモンここ

+0

「HMisc :: cut2」を参照してください。 –

答えて

2

あなたがいます。 3つのデータフレームを印刷します(3つの別々の間隔のそれぞれに1つずつ)。

さまざまなリストやベクターをすべて扱うより洗練された方法があります。自由に操作してください。

周期1のために、与え
library(readxl) 

CDS_bond_basis <- read_excel("CDS-bond basis.xlsx") 
RatingDowngradesFinal_ <- read_excel("RatingDowngradesFinal.xlsx") 
CDS_bond_basis$Dates <- as.Date(CDS_bond_basis$Dates) 
RatingDowngradesFinal_$Dates <- as.Date(RatingDowngradesFinal_$Dates) 

# Ordered Fitch and Moody's rating scale 

fitch <- c("AAA", "AA+ ", "AA", "AA–", "A+", "A ", "A– ", "BBB+", "BBB", "BBB–", "BB+", "BB", "BB–", "B+", "B", "B–", "CCC", "CC", "C", "RD/D") 
moodys <- c("Aaa", "Aa1 *-", "Aa2", "Aa3", "A1", "A2", "A3", "Baa1", "Baa2", "Baa3", "Ba1", "Ba2", "Ba3", "B1", "B2", "B3", "Caa1", "Caa2", "Caa3", "Ca", "C", "WR") 
standardandpoors <- c("AA *-", "AA- *-", "AA", "AA-", "A+", "A+ *-", "A", "A *-", "A-", "A- *-", "BBB+", "BBB+ *-", "BBB", "BBB *-", "BBB-", "BB+ *-", "BB *-", "B") 
dbrs <- c("AAA *-", "AAH *-", "AAH", "AAL *-", "AAL", "AA", "AA *-", "AH *-", "AH", "A", "A *-", "AL", "AL *-", "BBBH", "BBBH *-", "BBB", "BBB *-", "BBBL *-") 

# A way to split your dataframe 

firstPeriod <- split(CDS_bond_basis,as.Date("2007-01-02") <= CDS_bond_basis$Dates & 
         CDS_bond_basis$Dates <= as.Date("2009-12-31"))[2] 
secondPeriod <- split(CDS_bond_basis,as.Date("2010-01-01") <= CDS_bond_basis$Dates & 
         CDS_bond_basis$Dates <= as.Date("2012-12-31"))[2] 
thirdPeriod <- split(CDS_bond_basis,as.Date("2013-01-01") <= CDS_bond_basis$Dates & 
         CDS_bond_basis$Dates <= as.Date("2016-12-30"))[2] 

listIntervals <- list(c(-30, -1), c(1, 30), c(31, 60), c(61, 90), c(-1, 1), c(1, 10)) 

# Create list of vectors that will contain the mean data for each of your 6 intervals, First/Second/Third is used 
# for your "First of all I would like to split the whole time period into three separate intervals" request 

listMeanCDSFirst <- list(c(), c(), c(), c(), c(), c()) 
listMeanBondFirst <- list(c(), c(), c(), c(), c(), c()) 
listMeanSwapZRFirst <- list(c(), c(), c(), c(), c(), c()) 
listMeanCDSbbFirst <- list(c(), c(), c(), c(), c(), c()) 

listMeanCDSSecond <- list(c(), c(), c(), c(), c(), c()) 
listMeanBondSecond <- list(c(), c(), c(), c(), c(), c()) 
listMeanSwapZRSecond <- list(c(), c(), c(), c(), c(), c()) 
listMeanCDSbbSecond <- list(c(), c(), c(), c(), c(), c()) 

listMeanCDSThird <- list(c(), c(), c(), c(), c(), c()) 
listMeanBondThird <- list(c(), c(), c(), c(), c(), c()) 
listMeanSwapZRThird <- list(c(), c(), c(), c(), c(), c()) 
listMeanCDSbbThird <- list(c(), c(), c(), c(), c(), c()) 

for (i in seq(nrow(RatingDowngradesFinal_))) { 

    # Check whether a downgrade occured 

    if (isTRUE(match(RatingDowngradesFinal_$`New rating`[i], fitch) > 
      match(RatingDowngradesFinal_$`Previous rating`[i], fitch)) | 
     isTRUE(match(RatingDowngradesFinal_$`New rating`[i], moodys) > 
      match(RatingDowngradesFinal_$`Previous rating`[i], moodys)) | 
     isTRUE(match(RatingDowngradesFinal_$`New rating`[i], standardandpoors) > 
      match(RatingDowngradesFinal_$`Previous rating`[i], standardandpoors)) | 
     isTRUE(match(RatingDowngradesFinal_$`New rating`[i], dbrs) > 
      match(RatingDowngradesFinal_$`Previous rating`[i], dbrs))) { 

    # Set the interval 

    for (j in seq(length(listIntervals))) { 

     interval <- c(RatingDowngradesFinal_$Dates[i] + listIntervals[[j]][1], RatingDowngradesFinal_$Dates[i] + listIntervals[[j]][2]) 

     # Filter the dataframe by "interval" 
     beforeDownGrade <- split(CDS_bond_basis, interval[1] <= CDS_bond_basis$Dates & 
           CDS_bond_basis$Dates <= interval[2] & 
           CDS_bond_basis$Bank == as.character(RatingDowngradesFinal_$Bank[i])) 

     if (is.null(beforeDownGrade$'TRUE') == FALSE) { 

     if (nrow(beforeDownGrade$'TRUE') > 1) { 

      if (as.Date("2007-01-02") <= RatingDowngradesFinal_$Dates[i] & RatingDowngradesFinal_$Dates[i] <= as.Date("2009-12-31")) { 

      listMeanCDSFirst[[j]] <- c(listMeanCDSFirst[[j]], mean(diff(beforeDownGrade$'TRUE'$CDS))) 
      listMeanBondFirst[[j]] <- c(listMeanBondFirst[[j]], mean(diff(beforeDownGrade$'TRUE'$Bond))) 
      listMeanSwapZRFirst[[j]] <- c(listMeanSwapZRFirst[[j]], mean(diff(beforeDownGrade$'TRUE'$`Swap zero rate`))) 
      listMeanCDSbbFirst[[j]] <- c(listMeanCDSbbFirst[[j]], mean(diff(beforeDownGrade$'TRUE'$`CDS-bond basis`))) 

      } else if (as.Date("2010-01-01") <= RatingDowngradesFinal_$Dates[i] & RatingDowngradesFinal_$Dates[i] <= as.Date("2012-12-31")) { 
      listMeanCDSSecond[[j]] <- c(listMeanCDSSecond[[j]], mean(diff(beforeDownGrade$'TRUE'$CDS))) 
      listMeanBondSecond[[j]] <- c(listMeanBondSecond[[j]], mean(diff(beforeDownGrade$'TRUE'$Bond))) 
      listMeanSwapZRSecond[[j]] <- c(listMeanSwapZRSecond[[j]], mean(diff(beforeDownGrade$'TRUE'$`Swap zero rate`))) 
      listMeanCDSbbSecond[[j]] <- c(listMeanCDSbbSecond[[j]], mean(diff(beforeDownGrade$'TRUE'$`CDS-bond basis`))) 

      } else if (as.Date("2013-01-01") <= RatingDowngradesFinal_$Dates[i] & RatingDowngradesFinal_$Dates[i] <= as.Date("2016-12-30")) { 
      listMeanCDSThird[[j]] <- c(listMeanCDSThird[[j]], mean(diff(beforeDownGrade$'TRUE'$CDS))) 
      listMeanBondThird[[j]] <- c(listMeanBondThird[[j]], mean(diff(beforeDownGrade$'TRUE'$Bond))) 
      listMeanSwapZRThird[[j]] <- c(listMeanSwapZRThird[[j]], mean(diff(beforeDownGrade$'TRUE'$`Swap zero rate`))) 
      listMeanCDSbbThird[[j]] <- c(listMeanCDSbbThird[[j]], mean(diff(beforeDownGrade$'TRUE'$`CDS-bond basis`))) 

      } 

     } 

     } 

    } 

    } 

} 

PreviousMonth1 <- c(mean(listMeanCDSFirst[[1]]), mean(listMeanBondFirst[[1]]), mean(listMeanSwapZRFirst[[1]]), mean(listMeanCDSbbFirst[[1]])) 
NextMonth1 <- c(mean(listMeanCDSFirst[[2]]), mean(listMeanBondFirst[[2]]), mean(listMeanSwapZRFirst[[2]]), mean(listMeanCDSbbFirst[[2]])) 
NextSecondMonth1 <- c(mean(listMeanCDSFirst[[3]]), mean(listMeanBondFirst[[3]]), mean(listMeanSwapZRFirst[[3]]), mean(listMeanCDSbbFirst[[3]])) 
NextThirdMonth1 <- c(mean(listMeanCDSFirst[[4]]), mean(listMeanBondFirst[[4]]), mean(listMeanSwapZRFirst[[4]]), mean(listMeanCDSbbFirst[[4]])) 
PreviousAndNextDay1 <- c(mean(listMeanCDSFirst[[5]]), mean(listMeanBondFirst[[5]]), mean(listMeanSwapZRFirst[[5]]), mean(listMeanCDSbbFirst[[5]])) 
NextTenDays1 <- c(mean(listMeanCDSFirst[[6]]), mean(listMeanBondFirst[[6]]), mean(listMeanSwapZRFirst[[6]]), mean(listMeanCDSbbFirst[[6]])) 

PreviousMonth2 <- c(mean(listMeanCDSSecond[[1]]), mean(listMeanBondSecond[[1]]), mean(listMeanSwapZRSecond[[1]]), mean(listMeanCDSbbSecond[[1]])) 
NextMonth2 <- c(mean(listMeanCDSSecond[[2]]), mean(listMeanBondSecond[[2]]), mean(listMeanSwapZRSecond[[2]]), mean(listMeanCDSbbSecond[[2]])) 
NextSecondMonth2 <- c(mean(listMeanCDSSecond[[3]]), mean(listMeanBondSecond[[3]]), mean(listMeanSwapZRSecond[[3]]), mean(listMeanCDSbbSecond[[3]])) 
NextThirdMonth2 <- c(mean(listMeanCDSSecond[[4]]), mean(listMeanBondSecond[[4]]), mean(listMeanSwapZRSecond[[4]]), mean(listMeanCDSbbSecond[[4]])) 
PreviousAndNextDay2 <- c(mean(listMeanCDSSecond[[5]]), mean(listMeanBondSecond[[5]]), mean(listMeanSwapZRSecond[[5]]), mean(listMeanCDSbbSecond[[5]])) 
NextTenDays2 <- c(mean(listMeanCDSSecond[[6]]), mean(listMeanBondSecond[[6]]), mean(listMeanSwapZRSecond[[6]]), mean(listMeanCDSbbSecond[[6]])) 

PreviousMonth3 <- c(mean(listMeanCDSThird[[1]]), mean(listMeanBondThird[[1]]), mean(listMeanSwapZRThird[[1]]), mean(listMeanCDSbbThird[[1]])) 
NextMonth3 <- c(mean(listMeanCDSThird[[2]]), mean(listMeanBondThird[[2]]), mean(listMeanSwapZRThird[[2]]), mean(listMeanCDSbbThird[[2]])) 
NextSecondMonth3 <- c(mean(listMeanCDSThird[[3]]), mean(listMeanBondThird[[3]]), mean(listMeanSwapZRThird[[3]]), mean(listMeanCDSbbThird[[3]])) 
NextThirdMonth3 <- c(mean(listMeanCDSThird[[4]]), mean(listMeanBondThird[[4]]), mean(listMeanSwapZRThird[[4]]), mean(listMeanCDSbbThird[[4]])) 
PreviousAndNextDay3 <- c(mean(listMeanCDSThird[[5]]), mean(listMeanBondThird[[5]]), mean(listMeanSwapZRThird[[5]]), mean(listMeanCDSbbThird[[5]])) 
NextTenDays3 <- c(mean(listMeanCDSThird[[6]]), mean(listMeanBondThird[[6]]), mean(listMeanSwapZRThird[[6]]), mean(listMeanCDSbbThird[[6]])) 

period1 <- data.frame(PreviousMonth1, NextMonth1, NextSecondMonth1, NextThirdMonth1, PreviousAndNextDay1, NextTenDays1) 
rownames(period1) <- c("CDS", "Bond", "Swap zero Rate", "CDS-bond-basis") 
colnames(period1) <- c("[-30,-1]", "[1,30]", "[31,60]", "[61,90]", "[-1,1]", "[1,10]") 

period2 <- data.frame(PreviousMonth2, NextMonth2, NextSecondMonth2, NextThirdMonth2, PreviousAndNextDay2, NextTenDays2) 
rownames(period2) <- c("CDS", "Bond", "Swap zero Rate", "CDS-bond-basis") 
colnames(period2) <- c("[-30,-1]", "[1,30]", "[31,60]", "[61,90]", "[-1,1]", "[1,10]") 

period3 <- data.frame(PreviousMonth3, NextMonth3, NextSecondMonth3, NextThirdMonth3, PreviousAndNextDay3, NextTenDays3) 
rownames(period3) <- c("CDS", "Bond", "Swap zero Rate", "CDS-bond-basis") 
colnames(period3) <- c("[-30,-1]", "[1,30]", "[31,60]", "[61,90]", "[-1,1]", "[1,10]") 

print(period1) 
print(period2) 
print(period3) 

> print(period1) 
       [-30,-1]  [1,30]  [31,60]  [61,90] [-1,1]  [1,10] 
CDS   -0.1934029 0.5002909 0.09593413 -0.38126535 1.4342439 0.50836275 
Bond   0.1001838 0.5286359 0.78631190 -0.88260529 1.3531346 -0.06724158 
Swap zero Rate -0.5743715 -0.4472814 -0.13148844 -0.09563088 0.7412500 -0.30337037 
CDS-bond-basis -0.8679582 -0.4756264 -0.82186622 0.40570906 0.8223592 0.27223396 
+0

ありがとうございました!家に帰るとすぐに試してみるよ。 – rbonac

+0

私はいくつかのエラーメッセージを受け取りました。あなたがそれを見るために私は私の質問に対する答えに自分の変更を加えました。 事前にお返事ありがとうございます。 – rbonac

+0

テストを実行するためにデータ全体を使用しましたか? CDS_bond_basisで一致するダウングレードが見つかりませんでした。または、より大きなデータサンプルを提供できる場合... –

0

あなたが言ったように私はDRBSと標準およびプアーズの評価尺度を追加しました。さらに、私は次のように私のデータにそれを調整するために、リスト内のいくつかの評価を変更:

fitch <- c("AA+ *-","AA *-", "AA- *-", "AA", "AA-", "A+", "A+ *-", "A", "A 
*-", "A-", "A- *-", "BBB+", "BBB+ *-", "BBB", "BBB *-", "BBB-", "BBB- *-", 
"BB+", "BB+ *-", "BB", "BB *-", "BB-", "B+ *-", "B-", "B- *-", "CCC", "CC", 
"C") 
moodys <- c("Aaa*-", "Aa1 *-", "Aa2", "Aa2 *-", "Aa3", "Aa3 *-", "A1", "A1 
*-", "A2", "A2 *-", "A3", "A3 *-", "Baa1", "Baa1 *-", "Baa2", "Baa2 *-", 
"Baa3", "Baa3 *-", "Ba1", "Ba1 *-", "Ba2", "Ba2 *-", "Ba3", "Ba3 *-", "B1", 
"B2", "Caa2", "Caa2 *-", "Caa3", "Caa3 *-", "Ca", "C", "C-","C *-","C- *- 
","C+","C+ *-") 
standardandpoors <- c("AA *-", "AA- *-", "AA", "AA-", "A+", "A+ *-", "A", 
"A *-", "A-", "A- *-", "BBB+", "BBB+ *-", "BBB", "BBB *-", "BBB-", "BB+ *-", 
"BB *-", "B") 
dbrs <- c("AAA *-", "AAH *-", "AAH", "AAL *-", "AAL", "AA", "AA *-", "AH *- 
", "AH", "A", "A *-", "AL", "AL *-", "BBBH", "BBBH *-", "BBB", "BBB *-", 
"BBBL *-") 

その後、私はまた、ダウングレードが発生したかどうかを確認するかどうかのセクションにこれを追加しました:

if (isTRUE(match(RatingDowngradesFinal_$New.rating[i], fitch) > 
    match(RatingDowngradesFinal_$Previous.rating[i], fitch)) | 
    isTRUE(match(RatingDowngradesFinal_$New.rating[i], standardandpoors) > 
    match(RatingDowngradesFinal_$Previous.rating[i], standardandpoors)) | 
    isTRUE(match(RatingDowngradesFinal_$New.rating[i], dbrs) > 
    match(RatingDowngradesFinal_$Previous.rating[i], dbrs)) | 
    isTRUE(match(RatingDowngradesFinal_$New.rating[i], moodys) > 
    match(RatingDowngradesFinal_$Previous.rating[i], moodys))) {` 

をだから私はRで全体のコードを実行し、各時間間隔で次のエラーメッセージを得た:

PreviousMonth1 <- c(mean(listMeanCDSbbFirst[[1]]), 
mean(listMeanBondFirst[[1]]), mean(listMeanSwapZRFirst[[1]]), 
mean(listMeanCDSbbFirst[[1]])) 
Warning messages: 
1: In mean.default(listMeanCDSbbFirst[[1]]) : 
Argument ist weder numerisch noch boolesch: gebe NA zurück 
2: In mean.default(listMeanBondFirst[[1]]) : 
Argument ist weder numerisch noch boolesch: gebe NA zurück 
3: In mean.default(listMeanSwapZRFirst[[1]]) : 
Argument ist weder numerisch noch boolesch: gebe NA zurück 
4: In mean.default(listMeanCDSbbFirst[[1]]) : 
Argument ist weder numerisch noch boolesch: gebe NA zurück` 

これは、この結果になった:

print(period1) [-30,-1] [1,30] [31,60] [61,90] [-1,1] [1,10] CDS NA NA NA NA NA NA Bond NA NA NA NA NA NA Swap zero Rate NA NA NA NA NA NA CDS-bond-basis NA NA NA NA NA NA print(period2) [-30,-1] [1,30] [31,60] [61,90] [-1,1] [1,10] CDS NA NA NA NA NA NA Bond NA NA NA NA NA NA Swap zero Rate NA NA NA NA NA NA CDS-bond-basis NA NA NA NA NA NA print(period3)
[-30,-1] [1,30] [31,60] [61,90] [-1,1] [1,10] CDS NA NA NA NA NA NA Bond NA NA NA NA NA NA Swap zero Rate NA NA NA NA NA NA CDS-bond-basis NA NA NA NA NA NA
何が問題だと思われますか?

関連する問題