3
をmulti_rnn_cell、私はこのように、多層-RNNを作成します。Tensorflowエラー:初期化されていない値を使用しようとすると、私のモデルファイルで
#RNN initialization part
cell = tf.contrib.rnn.GRUCell(self.global_dim, kernel_initializer=self.xavier_initializer)
self.GRU = tf.contrib.rnn.MultiRNNCell([cell for _ in range(self.rnn_layers)])
私は別の関数で、このセルを呼び出す:
def RNN(self):
state = self.initRNNState()
inputs = tf.reshape(self.itemVec, [self.num_steps, self.batch_size, self.global_dim])
hiddenState = []
for time_step in range(self.num_steps):
_, state = self.GRU(inputs[time_step], state)
hiddenState.append(tf.reshape(state[-1], [self.global_dim])) #Store last layer
return tf.convert_to_tensor(hiddenState)
私のメインのファイルには、私がsess.run(tf.global_variables_initializer())
とsess.run(tf.local_variables_initializer())
の両方を試してみましたが、同じERORを得ながら:
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value multi_rnn_cell/cell_0/gru_cell/gates/kernel
[[Node: multi_rnn_cell/cell_0/gru_cell/gates/kernel/read = Identity[T=DT_FLOAT, _class=["loc:@multi_rnn_cell/cell_0/gru_cell/gates/kernel"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](multi_rnn_cell/cell_0/gru_cell/gates/kernel)]]
[[Node: Neg/_11 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1304_Neg", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
なぜ私のgruセルが初期化されていないのだろうか。
ええ、あなたの推測は正しいです!私は自分のグラフをどのように走らせるか知っていると思う。 –