私は機械学習をPythonで勉強しています。 このコードはStandford Uivクラスからのものです。 私はこれらのコードを把握しようとしましたが失敗しました。私はこのラムダ関数を理解することができません
問題はloss_W = lambda W: self.loss(x,t)
です。 それは本当ではありませんloss_W(1)またはloss_W(2)または何かが結果を変更できないのですか?
私はこれら2つのコードの結果が異なることを理解できません。
grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
def numerical_gradient(f, x):
h = 1e-4 # 0.0001
grad = np.zeros_like(x)
for idx in range(x.size):
tmp_val = x[idx]
# f(x+h)
x[idx] = float(tmp_val) + h
fxh1 = f(x)
# f(x-h)
x[idx] = tmp_val - h
fxh2 = f(x)
grad[idx] = (fxh1 - fxh2)/(2*h)
x[idx] = tmp_val
return grad
class TwoLayerNet:
def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
self.params = {}
self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def predict(self, x):
W1, W2 = self.params['W1'], self.params['W2']
b1, b2 = self.params['b1'], self.params['b2']
a1 = np.dot(x, W1)
z1 = sigmoid(a1)
a2 = np.dot(z1,W2)
y = softmax(a2)
return y
def loss(self, x, t):
y = self.predict(x)
return cross_entropy_error(y,t)
def accuracy(self, x,t):
y = self.predict(x)
y = np.argmax(y, axis=0)
t = np.argmax(t, axis=0)
data_len = len(x)
accuracy = np.sum(y==t)/float(data_len)
return accuracy
def numerical_gradient(self, x, t):
loss_W = lambda W: self.loss(x,t)
grads = {}
grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
return grads
Umは、クラスメンバとトップレベル関数の両方として定義された 'numerical_gradient'ですか?私は '_numerical_gradient'(これはまったく呼び出されていないようです)について話しているわけではありません。 – Tagc
申し訳ありませんが、_numerical_gradientはnumeric_gradientである必要があります。それは私の逃した と私はコードを編集しました。ありがとう – yunsoo
クール。ですから、私の質問は、クラスメンバとトップレベルの関数の両方として 'numerical_gradient'を2回定義しているのでしょうか? – Tagc