私はOpenCVライブラリのコードに基づいてSVMを使用して手書き数字を訓練しようとしています。私のトレーニング部分は以下の通りである:PythonでSVMを使用して手書き認識のための.datファイルを実装する方法
import cv2
import numpy as np
SZ=20
bin_n = 16
svm_params = dict(kernel_type = cv2.SVM_LINEAR,
svm_type = cv2.SVM_C_SVC,
C=2.67, gamma=5.383)
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
return img
def hog(img):
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists) # hist is a 64 bit vector
return hist
img = cv2.imread('digits.png',0)
if img is None:
raise Exception("we need the digits.png image from samples/data here !")
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
train_cells = [ i[:50] for i in cells ]
test_cells = [ i[50:] for i in cells]
deskewed = [map(deskew,row) for row in train_cells]
hogdata = [map(hog,row) for row in deskewed]
trainData = np.float32(hogdata).reshape(-1,64)
responses = np.float32(np.repeat(np.arange(10),250)[:,np.newaxis])
svm = cv2.SVM()
svm.train(trainData,responses, params=svm_params)
svm.save('svm_data.dat')
相続人digits.png enter image description here
その結果、私はsvm_data.datファイルを得ました。しかし、今はモデルの実装方法がわかりません。ここでこの番号を読もうとしています。 enter image description here
誰かが私を助けてくれますか?