0
GridSearchCV内でXGBClassifierを検索するときにeval_metric = 'mlogloss'を使用することができますか?いくつかの例は非常に高く評価されます。eval_metric = 'mlogloss'のGridSearchCVとXGBClassifier
GridSearchCV内でXGBClassifierを検索するときにeval_metric = 'mlogloss'を使用することができますか?いくつかの例は非常に高く評価されます。eval_metric = 'mlogloss'のGridSearchCVとXGBClassifier
はい、可能です。 GridSearchCVには、loglossを返すスコア関数(負の値、グリッドは高いスコアモデルを選択し、損失の少ないモデルが必要です)を提供する必要があります。
のような最良の反復モデルを使用しますfrom xgboost import XGBClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import metrics
tuned_parameters = {'learning_rate': [0.4,0.5],
'max_depth': [6,7]
}
fit_params={
"eval_set":[(X_test_tr_boost, y_test)],
"eval_metric": 'mlogloss',
"early_stopping_rounds":100,
"verbose":True
}
# XGBClassifier with early stopping Returns the model from the last iteration (not the best one).
# In order to provide to GridSearchCV the score of the best model, we need to use a score function
# to evaluate log_loss calling the estimator with the appropiate ntree_limit param
#(instead of using scoring=‘neg_log_loss’ in GridSearchCV creation)
#in order to use the best iteration of the estimator (ntree_limit)
def _score_func(estimator, X, y):
score1 = metrics.log_loss(y,estimator.predict_proba(X,
ntree_limit=estimator.best_ntree_limit),
labels=[0, 1, 2, 3, 4, 5, 6, 7, 8])
return -score1
model = XGBClassifier(objective ='multi:softprob', seed=0,n_estimators=1000)
gridsearch = GridSearchCV(model, tuned_parameters, verbose=999999 ,
scoring=_score_func,
fit_params=fit_params
)
gridsearch.fit(X_train_tr_boost, y_train)
print (gridsearch.best_params_)
print (gridsearch.best_score_)