2017-06-12 8 views
1

tldr;脈拍センサーとmkr1000を使用してBPMを計算するための簡単な/論理的な方法(初心者のための)は何ですか?私は視覚化やスケッチの処理を望んでいませんが、BPM値を印刷するだけです。BPMを計算するパルスセンサー+ arduino mkr1000

私はこのことで初心者ですが、これを理解してこの問題を解決するために努力しましたが、 。

Arduino mkr1000でパルスセンサー(SEN-11574)を使用してBPMを計算し、シリアルモニターで印刷します。本当の問題は、私は私が理解からon their website here 利用できる彼らのサンプルコード、割り込みの割り込みタイマ機能を使用してBPMを計算することができませんということですしかし、私は

// Variables 
int PulseSensorPurplePin = 0;  // Pulse Sensor PURPLE WIRE connected to ANALOG PIN 0 
int LED13 = 13; // The on-board Arduion LED 


int Signal;    // holds the incoming raw data. Signal value can range from 0-1024 
int Threshold = 550;   // Determine which Signal to "count as a beat", and which to ingore. 


// The SetUp Function: 
void setup() { 
    pinMode(LED13,OUTPUT);   // pin that will blink to your heartbeat! 
    Serial.begin(9600);   // Set's up Serial Communication at certain speed. 

} 

// The Main Loop Function 
void loop() { 

    Signal = analogRead(PulseSensorPurplePin); // Read the PulseSensor's value. 
               // Assign this value to the "Signal" variable. 

    Serial.println(Signal);     // Send the Signal value to Serial Plotter. 


    if(Signal > Threshold){       // If the signal is above "550", then "turn-on" Arduino's on-Board LED. 
    digitalWrite(LED13,HIGH);   
    } else { 
    digitalWrite(LED13,LOW);    // Else, the sigal must be below "550", so "turn-off" this LED. 
    } 


delay(10); 
} 

彼らのスターターコードを使用して、生の測定値を取得することができました.inoファイルはmkr1000と互換性がありません。あなたの参照のためにこのコードが添付されています。割り込み、ノートオン
// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE. 
// Timer 2 makes sure that we take a reading every 2 miliseconds 
ISR(TIMER2_COMPA_vect){       // triggered when Timer2 counts to 124 
    cli();          // disable interrupts while we do this 
    Signal = analogRead(pulsePin);    // read the Pulse Sensor 
    sampleCounter += 2;       // keep track of the time in mS with this variable 
    int N = sampleCounter - lastBeatTime;  // monitor the time since the last beat to avoid noise 

    // find the peak and trough of the pulse wave 
    if(Signal < thresh && N > (IBI/5)*3){  // avoid dichrotic noise by waiting 3/5 of last IBI 
    if (Signal < T){      // T is the trough 
     T = Signal;       // keep track of lowest point in pulse wave 
    } 
    } 

    if(Signal > thresh && Signal > P){   // thresh condition helps avoid noise 
    P = Signal;        // P is the peak 
    }          // keep track of highest point in pulse wave 

    // NOW IT'S TIME TO LOOK FOR THE HEART BEAT 
    // signal surges up in value every time there is a pulse 
    if (N > 250){         // avoid high frequency noise 
    if ((Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3)){ 
     Pulse = true;        // set the Pulse flag when we think there is a pulse 
     digitalWrite(blinkPin,HIGH);    // turn on pin 13 LED 
     IBI = sampleCounter - lastBeatTime;   // measure time between beats in mS 
     lastBeatTime = sampleCounter;    // keep track of time for next pulse 

     if(secondBeat){      // if this is the second beat, if secondBeat == TRUE 
     secondBeat = false;     // clear secondBeat flag 
     for(int i=0; i<=9; i++){    // seed the running total to get a realisitic BPM at startup 
      rate[i] = IBI; 
     } 
     } 

     if(firstBeat){       // if it's the first time we found a beat, if firstBeat == TRUE 
     firstBeat = false;     // clear firstBeat flag 
     secondBeat = true;     // set the second beat flag 
     sei();        // enable interrupts again 
     return;        // IBI value is unreliable so discard it 
     } 


     // keep a running total of the last 10 IBI values 
     word runningTotal = 0;     // clear the runningTotal variable 

     for(int i=0; i<=8; i++){    // shift data in the rate array 
     rate[i] = rate[i+1];     // and drop the oldest IBI value 
     runningTotal += rate[i];    // add up the 9 oldest IBI values 
     } 

     rate[9] = IBI;       // add the latest IBI to the rate array 
     runningTotal += rate[9];    // add the latest IBI to runningTotal 
     runningTotal /= 10;      // average the last 10 IBI values 
     BPM = 60000/runningTotal;    // how many beats can fit into a minute? that's BPM! 
     QS = true;        // set Quantified Self flag 
     // QS FLAG IS NOT CLEARED INSIDE THIS ISR 
    } 
    } 

    if (Signal < thresh && Pulse == true){ // when the values are going down, the beat is over 
    digitalWrite(blinkPin,LOW);   // turn off pin 13 LED 
    Pulse = false;       // reset the Pulse flag so we can do it again 
    amp = P - T;       // get amplitude of the pulse wave 
    thresh = amp/2 + T;     // set thresh at 50% of the amplitude 
    P = thresh;       // reset these for next time 
    T = thresh; 
    } 

    if (N > 2500){       // if 2.5 seconds go by without a beat 
    thresh = 530;       // set thresh default 
    P = 512;        // set P default 
    T = 512;        // set T default 
    lastBeatTime = sampleCounter;   // bring the lastBeatTime up to date 
    firstBeat = true;      // set these to avoid noise 
    secondBeat = false;     // when we get the heartbeat back 
    } 

    sei();         // enable interrupts when youre done! 
}// end isr 

は、彼らがこのコードと互換性がありませんプロセッサ用に別の回避策は言及ファイル、それでもintructionsを次の時間後に、コードがタイマーでエラーが発生して、再び、動作しませんでした割り込み機能。

次に、this guideを使用しましたが、やはり動作せず、常に変化する生の信号値を出力します(S1023)。コードは(2つのタブ)に取り付けられている:

/* Pulse Sensor Amped 1.4 by Joel Murphy and Yury Gitman http://www.pulsesensor.com 
Adapted by sdizdarevic 
---------------------- Notes ---------------------- ---------------------- 
This code: 
1) Blinks an LED to User's Live Heartbeat PIN 6 
2) Fades an LED to User's Live HeartBeat 
3) Determines BPM 
4) Prints All of the Above to Serial 
Read Me: 
https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/blob/master/README.md 
----------------------  ---------------------- ---------------------- 
*/ 


// Variables 
int pulsePin = 0;     // Pulse Sensor purple wire connected to analog pin 0 
int blinkPin = 6;    // pin to blink led at each beat 
//int fadePin = 5;     // pin to do fancy classy fading blink at each beat 
//int fadeRate = 0;     // used to fade LED on with PWM on fadePin 

// Volatile Variables, used in the interrupt service routine! 
volatile int BPM;     // int that holds raw Analog in 0. updated every 2mS 
volatile int Signal;    // holds the incoming raw data 
volatile int IBI = 600;    // int that holds the time interval between beats! Must be seeded! 
volatile boolean Pulse = false;  // "True" when User's live heartbeat is detected. "False" when not a "live beat". 
volatile boolean QS = false;  // becomes true when Arduoino finds a beat. 



volatile int rate[10];     // array to hold last ten IBI values 
volatile unsigned long sampleCounter = 0;   // used to determine pulse timing 
volatile unsigned long lastBeatTime = 0;   // used to find IBI 
volatile int P =512;      // used to find peak in pulse wave, seeded 
volatile int T = 512;      // used to find trough in pulse wave, seeded 
volatile int thresh = 525;    // used to find instant moment of heart beat, seeded 
volatile int amp = 100;     // used to hold amplitude of pulse waveform, seeded 
volatile boolean firstBeat = true;  // used to seed rate array so we startup with reasonable BPM 
volatile boolean secondBeat = false;  // used to seed rate array so we startup with reasonable BPM 




// Regards Serial OutPut -- Set This Up to your needs 
static boolean serialVisual = false; // Set to 'false' by Default. Re-set to 'true' to see Arduino Serial Monitor ASCII Visual Pulse 


void setup(){ 
    pinMode(blinkPin,OUTPUT);   // pin that will blink to your heartbeat! 
    //pinMode(fadePin,OUTPUT);   // pin that will fade to your heartbeat! 
    Serial.begin(115200);    // we agree to talk fast! 
    //interruptSetup();     // sets up to read Pulse Sensor signal every 2mS 
    // IF YOU ARE POWERING The Pulse Sensor AT VOLTAGE LESS THAN THE BOARD VOLTAGE, 
    // UN-COMMENT THE NEXT LINE AND APPLY THAT VOLTAGE TO THE A-REF PIN 
// analogReference(EXTERNAL); 
} 


// Where the Magic Happens 
void loop(){ 

// 
// 
Signal = analogRead(pulsePin);    // read the Pulse Sensor 
    sampleCounter += 2;       // keep track of the time in mS with this variable 
    int N = sampleCounter - lastBeatTime;  // monitor the time since the last beat to avoid noise 

    // find the peak and trough of the pulse wave 
    if(Signal < thresh && N > (IBI/5)*3){  // avoid dichrotic noise by waiting 3/5 of last IBI 
    if (Signal < T){      // T is the trough 
     T = Signal;       // keep track of lowest point in pulse wave 
    } 
    } 

    if(Signal > thresh && Signal > P){   // thresh condition helps avoid noise 
    P = Signal;        // P is the peak 
    }          // keep track of highest point in pulse wave 

    // NOW IT'S TIME TO LOOK FOR THE HEART BEAT 
    // signal surges up in value every time there is a pulse 
    if (N > 250){         // avoid high frequency noise 
    if ((Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3)){   
     Pulse = true;        // set the Pulse flag when we think there is a pulse 
     digitalWrite(blinkPin,HIGH);    // turn on pin 13 LED 
     IBI = sampleCounter - lastBeatTime;   // measure time between beats in mS 
     lastBeatTime = sampleCounter;    // keep track of time for next pulse 

     if(secondBeat){      // if this is the second beat, if secondBeat == TRUE 
     secondBeat = false;     // clear secondBeat flag 
     for(int i=0; i<=9; i++){    // seed the running total to get a realisitic BPM at startup 
      rate[i] = IBI;      
     } 
     } 

     if(firstBeat){       // if it's the first time we found a beat, if firstBeat == TRUE 
     firstBeat = false;     // clear firstBeat flag 
     secondBeat = true;     // set the second beat flag 

     return;        // IBI value is unreliable so discard it 
     } 


     // keep a running total of the last 10 IBI values 
     word runningTotal = 0;     // clear the runningTotal variable  

     for(int i=0; i<=8; i++){    // shift data in the rate array 
     rate[i] = rate[i+1];     // and drop the oldest IBI value 
     runningTotal += rate[i];    // add up the 9 oldest IBI values 
     } 

     rate[9] = IBI;       // add the latest IBI to the rate array 
     runningTotal += rate[9];    // add the latest IBI to runningTotal 
     runningTotal /= 10;      // average the last 10 IBI values 
     BPM = 60000/runningTotal;    // how many beats can fit into a minute? that's BPM! 
     QS = true;        // set Quantified Self flag 
     // QS FLAG IS NOT CLEARED INSIDE THIS ISR 
    }      
    } 

    if (Signal < thresh && Pulse == true){ // when the values are going down, the beat is over 
    digitalWrite(blinkPin,LOW);   // turn off pin 13 LED 
    Pulse = false;       // reset the Pulse flag so we can do it again 
    amp = P - T;       // get amplitude of the pulse wave 
    thresh = amp/2 + T;     // set thresh at 50% of the amplitude 
    P = thresh;       // reset these for next time 
    T = thresh; 
    } 

    if (N > 2500){       // if 2.5 seconds go by without a beat 
    thresh = 512;       // set thresh default 
    P = 512;        // set P default 
    T = 512;        // set T default 
    lastBeatTime = sampleCounter;   // bring the lastBeatTime up to date   
    firstBeat = true;      // set these to avoid noise 
    secondBeat = false;     // when we get the heartbeat back 
    } 





    serialOutput() ;  

    if (QS == true){  // A Heartbeat Was Found 
         // BPM and IBI have been Determined 
         // Quantified Self "QS" true when arduino finds a heartbeat 
     // fadeRate = 255;   // Makes the LED Fade Effect Happen 
           // Set 'fadeRate' Variable to 255 to fade LED with pulse 
     serialOutputWhenBeatHappens(); // A Beat Happened, Output that to serial.  
     QS = false;      // reset the Quantified Self flag for next time  
    } 

// ledFadeToBeat();      // Makes the LED Fade Effect Happen 
    delay(20);        // take a break 
} 





/*void ledFadeToBeat(){ 
    fadeRate -= 15;       // set LED fade value 
    fadeRate = constrain(fadeRate,0,255); // keep LED fade value from going into negative numbers! 
    //analogWrite(fadePin,fadeRate);   // fade LED 
    } 
*/ 

SerialHandlingファイルは:

////////// 
///////// All Serial Handling Code, 
///////// It's Changeable with the 'serialVisual' variable 
///////// Set it to 'true' or 'false' when it's declared at start of code. 
///////// 

void serialOutput(){ // Decide How To Output Serial. 
if (serialVisual == true){ 
    arduinoSerialMonitorVisual('-', Signal); // goes to function that makes Serial Monitor Visualizer 
} else{ 
     sendDataToSerial('S', Signal);  // goes to sendDataToSerial function 
}   
} 


// Decides How To OutPut BPM and IBI Data 
void serialOutputWhenBeatHappens(){  
if (serialVisual == true){   // Code to Make the Serial Monitor Visualizer Work 
    Serial.print("*** Heart-Beat Happened *** "); //ASCII Art Madness 
    Serial.print("BPM: "); 
    Serial.print(BPM); 
    Serial.print(" "); 
} else{ 
     sendDataToSerial('B',BPM); // send heart rate with a 'B' prefix 
     sendDataToSerial('Q',IBI); // send time between beats with a 'Q' prefix 
} 
} 



// Sends Data to Pulse Sensor Processing App, Native Mac App, or Third-party Serial Readers. 
void sendDataToSerial(char symbol, int data){ 
    Serial.print(symbol); 

    Serial.println(data);     
    } 


// Code to Make the Serial Monitor Visualizer Work 
void arduinoSerialMonitorVisual(char symbol, int data){  
    const int sensorMin = 0;  // sensor minimum, discovered through experiment 
const int sensorMax = 1024; // sensor maximum, discovered through experiment 

    int sensorReading = data; 
    // map the sensor range to a range of 12 options: 
    int range = map(sensorReading, sensorMin, sensorMax, 0, 11); 

    // do something different depending on the 
    // range value: 
    switch (range) { 
    case 0:  
    Serial.println("");  /////ASCII Art Madness 
    break; 
    case 1: 
    Serial.println("---"); 
    break; 
    case 2:  
    Serial.println("------"); 
    break; 
    case 3:  
    Serial.println("---------"); 
    break; 
    case 4: 
    Serial.println("------------"); 
    break; 
    case 5: 
    Serial.println("--------------|-"); 
    break; 
    case 6: 
    Serial.println("--------------|---"); 
    break; 
    case 7: 
    Serial.println("--------------|-------"); 
    break; 
    case 8: 
    Serial.println("--------------|----------"); 
    break; 
    case 9:  
    Serial.println("--------------|----------------"); 
    break; 
    case 10: 
    Serial.println("--------------|-------------------"); 
    break; 
    case 11: 
    Serial.println("--------------|-----------------------"); 
    break; 

    } 
} 

シリアルモニターは、常に変化しているこれらの番号が表示さ:

S797 
S813 
S798 
S811 
S822 
S802 
S821 
S819 
S818 
S806 
S797 
S797 
S812 
S816 
S794 
S820 
S821 
S808 
S816 
S820 
S803 
S810 
S811 
S806 
S822 
S817 
S811 
S822 
S800 
S820 
S799 
S800 
S815 
S809 
S820 
S822 
S821 
S809 
S796 
S821 
S816 
S798 
S820 

すべてを、すべてでは、私がいました誰かがBPMの可視化に対処することなく、より基本的で/簡単な方法でBPMを計算するコードを手伝ってくれるかと期待しています。

申し訳ありませんが、長いポストのために、ありがとう!

+0

Arduinoのは、いずれかのCとない正確にC++ではありません。タグをスパムしないでください。 – Olaf

答えて

0

これは私が私のボード上の割り込みの有無を乗り越えるために、それをやった方法です:

#define pulsePin A0 

// VARIABLES 
int rate[10];      
unsigned long sampleCounter = 0; 
unsigned long lastBeatTime = 0; 
unsigned long lastTime = 0, N; 
int BPM = 0; 
int IBI = 0; 
int P = 512; 
int T = 512; 
int thresh = 512; 
int amp = 100;     
int Signal; 
boolean Pulse = false; 
boolean firstBeat = true;   
boolean secondBeat = true; 
boolean QS = false;  

void setup() { 
    Serial.begin(9600); 

} 

void loop() { 

       if (QS == true) { 
       Serial.println("BPM: "+ String(BPM)); 
       QS = false; 
       } else if (millis() >= (lastTime + 2)) { 
       readPulse(); 
       lastTime = millis(); 
       }  
} 



void readPulse() { 

    Signal = analogRead(pulsePin);    
    sampleCounter += 2;       
    int N = sampleCounter - lastBeatTime; 

    detectSetHighLow(); 

    if (N > 250) { 
    if ((Signal > thresh) && (Pulse == false) && (N > (IBI/5) * 3)) 
     pulseDetected(); 
    } 

    if (Signal < thresh && Pulse == true) { 
    Pulse = false; 
    amp = P - T; 
    thresh = amp/2 + T; 
    P = thresh; 
    T = thresh; 
    } 

    if (N > 2500) { 
    thresh = 512; 
    P = 512; 
    T = 512; 
    lastBeatTime = sampleCounter; 
    firstBeat = true;    
    secondBeat = true;   
    } 

} 

void detectSetHighLow() { 

    if (Signal < thresh && N > (IBI/5) * 3) { 
    if (Signal < T) {      
     T = Signal;       
    } 
    } 

    if (Signal > thresh && Signal > P) {  
    P = Signal;       
    }          

} 

void pulseDetected() { 
    Pulse = true;       
    IBI = sampleCounter - lastBeatTime;  
    lastBeatTime = sampleCounter;   

    if (firstBeat) {      
    firstBeat = false;     
    return;        
    } 
    if (secondBeat) {      
    secondBeat = false;     
    for (int i = 0; i <= 9; i++) { 
     rate[i] = IBI; 
    } 
    } 

    word runningTotal = 0;     

    for (int i = 0; i <= 8; i++) {   
    rate[i] = rate[i + 1];    
    runningTotal += rate[i];   
    } 

    rate[9] = IBI;      
    runningTotal += rate[9];    
    runningTotal /= 10;     
    BPM = 60000/runningTotal;   
    QS = true;        
} 
+0

ありがとうございます。これは間違いなく機能します。 BPM値が表示され、シリアルモニタで印刷を開始すると、通常の40秒から開始され、10秒以内に200以上に増加し始めます。これが私のmkr1000やコードと間違っているのではないかと思っていましたか?私は2つの異なる脈拍センサーを持っており、それらは両方とも同じ問題を抱えています! また、デジタルピンを使用して温度を計算することも計画しており、注意が必要なことがあるかどうか疑問に思っていましたか?もう一度、ありがとうございました。これは本当に役立ちます! – rp2402

+0

あなたは歓迎します、投票して、答えを受け入れます。他のセンサーを追加するときに、BPMを計算するときに遅延を追加しないようにしてください.QSが真のときに最初のifステートメント内に遅延を追加することができます – Wadaane

+0

ジャンプの読み方については、これはセンサーの品質と反射光を扱っているので、分離されていることを確認する必要があります。また、どのように私はそれが私が "無効な読書"を印刷していないときに、特定の範囲(40-100)内にあるかどうかをチェックするif文を追加して、すべての余分なコードが最初のif文にある必要があります。 – Wadaane

-1

私が使用したセンサーは、DFRobot Piezoディスク振動センサーモジュールです。

void setup() { 



Serial.begin(57600); 
} 

void loop() { 
    int avg = 0; 
    for(int i=0;i<64;i++){ 
    avg+=analogRead(A2); 
    } 
    Serial.println(avg/64,DEC); 
    delay(5); 
} 


void setup() { 
    Serial.begin(57600); 
} 

void loop() { 
    int avg = 0; 
    for(int i=0;i<64;i++){ 
    avg+=analogRead(A2); 
    } 
    Serial.println(avg/64,DEC); 
    delay(5); 
} 



When defining an arbitrary threshold (e.g. half of the maximum measured value), the rising edge of the signal will pass the threshold once per heartbeat, making measuring it as simple as measuring the time between two successive beats. For less jitter, I chose to calculate the heart rate using the average of the last 16 time differences between the beats. 

心拍数を計算し、すべてのビートの最後の16ビートの平均心拍数を出力コード:

int threshold = 60; 
int oldvalue = 0; 
int newvalue = 0; 
unsigned long oldmillis = 0; 
unsigned long newmillis = 0; 
int cnt = 0; 
int timings[16]; 

void setup() { 
    Serial.begin(57600); 
} 

void loop() { 
    oldvalue = newvalue; 
    newvalue = 0; 
    for(int i=0; i<64; i++){ // Average over 16 measurements 
    newvalue += analogRead(A2); 
    } 
    newvalue = newvalue/64; 
    // find triggering edge 
    if(oldvalue<threshold && newvalue>=threshold){ 
    oldmillis = newmillis; 
    newmillis = millis(); 
    // fill in the current time difference in ringbuffer 
    timings[cnt%16]= (int)(newmillis-oldmillis); 
    int totalmillis = 0; 
    // calculate average of the last 16 time differences 
    for(int i=0;i<16;i++){ 
     totalmillis += timings[i]; 
    } 
    // calculate heart rate 
    int heartrate = 60000/(totalmillis/16); 
    Serial.println(heartrate,DEC); 
    cnt++; 
    } 
    delay(5); 
} 



int threshold = 60; 
int oldvalue = 0; 
int newvalue = 0; 
unsigned long oldmillis = 0; 
unsigned long newmillis = 0; 
int cnt = 0; 
int timings[16]; 

void setup() { 
    Serial.begin(57600); 
} 

void loop() { 
    oldvalue = newvalue; 
    newvalue = 0; 
    for(int i=0; i<64; i++){ // Average over 16 measurements 
    newvalue += analogRead(A2); 
    } 
    newvalue = newvalue/64; 
    // find triggering edge 
    if(oldvalue<threshold && newvalue>=threshold){ 
    oldmillis = newmillis; 
    newmillis = millis(); 
    // fill in the current time difference in ringbuffer 
    timings[cnt%16]= (int)(newmillis-oldmillis); 
    int totalmillis = 0; 
    // calculate average of the last 16 time differences 
    for(int i=0;i<16;i++){ 
     totalmillis += timings[i]; 
    } 
    // calculate heart rate 
    int heartrate = 60000/(totalmillis/16); 
    Serial.println(heartrate,DEC); 
    cnt++; 
    } 
    delay(5); 
} 

あなたが自宅でこれを試してみたい場合は、単にアナログ出力を接続(またはコードを変更する)、センサの5VとGNDラインを接続します。

関連する問題