データ構造train.data/label.dataに問題があると思われます。私はあなたのコードの両方のバージョンをテストしていると、彼らは働く:
import sklearn.svm as sksvm
import sklearn.grid_search as skgs
params = { 'C' : [ 0.01 , 0.1 , 1 , 10]}
X = np.random.rand(1000, 10) # (1000 x 10) matrix, 1000 points with 10 features
Y = np.random.randint(0, 2, 1000) # 1000 array, binary labels
mod = sksvm.SVC()
mod.fit(X, Y)
出力:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
と
import sklearn.svm as sksvm
import sklearn.grid_search as skgs
params = { 'C' : [ 0.01 , 0.1 , 1 , 10]}
X = np.random.rand(1000, 10) # (1000 x 10) matrix, 1000 points with 10 features
Y = np.random.randint(0, 2, 1000) # 1000 array, binary labels
mod = skgs.GridSearchCV(sksvm.SVC(), params, n_jobs=-1)
mod.fit(X, Y)
出力:
GridSearchCV(cv=None, error_score='raise',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False),
fit_params={}, iid=True, loss_func=None, n_jobs=-1,
param_grid={'C': [0.01, 0.1, 1, 10]}, pre_dispatch='2*n_jobs',
refit=True, score_func=None, scoring=None, verbose=0)
あなたのデータが入っている場合データフレームとシリーズコードはまだ動作しますあなたがが、コードの再現性の一片ずに言って
困難XとYを生成
X = pd.DataFrame(X)
Y = pd.Series(Y)
後:、あなたは追加することによって、それを試すことができます。また、あなたはたぶんsklearnというラベルを質問に追加するべきです。
これはどのようにパンダの質問ですか? SciPyのように思えます...また、完全に検証可能で再現可能な例を含めることを検討してください。つまり、答えをテストするためのデータの小さなサンプルを与えることです。 – Kartik
@ Kartik私はそれを編集しました –