を訓練しながら、ナンである私は、次のスタックトレースを取得する場所、私は損失を計算するためのステップが問題のように見える状況にtensorflow損失は、単一のGRUセルとRNNを実行しているRNN
Traceback (most recent call last):
File "language_model_test.py", line 15, in <module>
test_model()
File "language_model_test.py", line 12, in test_model
model.train(random_data, s)
File "/home/language_model/language_model.py", line 120, in train
train_pp = self._run_epoch(data, sess, inputs, rnn_ouputs, loss, trainOp, verbose)
File "/home/language_model/language_model.py", line 92, in _run_epoch
loss, _= sess.run([loss, trainOp], feed_dict=feed)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 952, in _run
fetch_handler = _FetchHandler(self._graph, fetches, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 408, in __init__
self._fetch_mapper = _FetchMapper.for_fetch(fetches)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 230, in for_fetch
return _ListFetchMapper(fetch)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 337, in __init__
self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 238, in for_fetch
return _ElementFetchMapper(fetches, contraction_fn)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 271, in __init__
% (fetch, type(fetch), str(e)))
TypeError: Fetch argument nan has invalid type <type 'numpy.float32'>, must be a string or Tensor. (Can not convert a float32 into a Tensor or Operation.)
を実行している
ここでdef train(self,data, session=tf.Session(), verbose=10):
print "initializing model"
self._add_placeholders()
inputs = self._add_embedding()
rnn_ouputs, _ = self._run_rnn(inputs)
outputs = self._projection_layer(rnn_ouputs)
loss = self._compute_loss(outputs)
trainOp = self._add_train_step(loss)
start = tf.initialize_all_variables()
saver = tf.train.Saver()
with session as sess:
sess.run(start)
for epoch in xrange(self._max_epochs):
train_pp = self._run_epoch(data, sess, inputs, rnn_ouputs, loss, trainOp, verbose)
print "Training preplexity for batch {} - {}".format(epoch, train_pp)
_run_epoch
のためのコードは、損失の任意の場所に戻ってnan
def _run_epoch(self, data, session, inputs, rnn_ouputs, loss, trainOp, verbose=10):
with session.as_default() as sess:
total_steps = sum(1 for x in data_iterator(data, self._batch_size, self._max_steps))
train_loss = []
for step, (x,y, l) in enumerate(data_iterator(data, self._batch_size, self._max_steps)):
print "step - {0}".format(step)
feed = {
self.input_placeholder: x,
self.label_placeholder: y,
self.sequence_length: l,
self._dropout_placeholder: self._dropout,
}
loss, _= sess.run([loss, trainOp], feed_dict=feed)
print "loss - {0}".format(loss)
train_loss.append(loss)
if verbose and step % verbose == 0:
sys.stdout.write('\r{}/{} : pp = {}'. format(step, total_steps, np.exp(np.mean(train_loss))))
sys.stdout.flush()
if verbose:
sys.stdout.write('\r')
return np.exp(np.mean(train_loss))
これは私が入力としての周りに渡す単語IDを使用して模倣するように設計されて自分のデータ random_data = np.random.normal(0, 100, size=[42068, 46])
については、以下を使用して自分のコードをテストするときに生じるれます。私のコードの残りの部分は、ここでは、次のgist
EDITで見つけることができます私はこの問題が発生したテストスーツ実行する方法です:私は他の言語モデルにrandom_data
を置き換えた場合
def test_model():
model = Language_model(vocab=range(0,101))
s = tf.Session()
#1 more than step size to acoomodate for the <eos> token at the end
random_data = np.random.normal(0, 100, size=[42068, 46])
# file = "./data/ptb.test.txt"
print "Fitting started"
model.train(random_data, s)
if __name__ == "__main__":
test_model()
を、費用としてnan
も出力されます。私の理解では、テンソルフローは、フィードディクテーションを渡すことによって数値を取得し、idに対応する適切な埋め込みベクトルを取得する必要があります。なぜrandom_data
が他のモデルのnan
を引き起こしているのか分かりません。