Kerasを使用して2つの異なるカテゴリの画像を分類するためにCNNを構築しました。私が抱えている問題は、トレーニング後に正しい予測を得ることができないということです。Keras - 正しいクラス予測を取得する際の問題
ちょっとした背景... データセットは、78750の大きな例(約95%のCat 1と5%のCat 2)です。これは、Catのオーバーフィッティングが発生していると想定している可能性があります。 1(これは問題だと思うが、データセットのサイズを変更するのは他の多くの理由で難しい)
これを解決するために、私は各畳み込みレイヤーに正規化を追加しましたが、役に立たない。
私の質問はこれです...私は絶対に私のカテゴリのサイズを変更する必要がありますか、または私がCatの過仕掛けと戦うために何かできることはありますか? 1?ここで
はCNNのためのコードである:ここで
model = Sequential()
model.add(Conv2D(filters=25,
kernel_size=(10, 10),
strides=(1, 1),
activation='relu',
input_shape=input_shape,
padding="VALID",
kernel_initializer=random_normal(mean=0, stddev=.1),
kernel_regularizer=l2(.001)))
model.add(MaxPooling2D(pool_size=(2, 2),
strides=(2, 2)))
model.add(Conv2D(filters=25,
kernel_size=(7, 7),
strides=(1, 1),
activation='relu',
padding="VALID",
kernel_initializer=random_normal(mean=0, stddev=.1),
kernel_regularizer=l2(.001)))
model.add(MaxPooling2D(pool_size=(2, 2),
strides=(2, 2)))
model.add(Conv2D(filters=25,
kernel_size=(5, 5),
strides=(2, 2),
activation='relu',
padding="VALID",
kernel_initializer=random_normal(mean=0, stddev=.1),
kernel_regularizer=l2(.001)))
model.add(MaxPooling2D(pool_size=(2, 2),
strides=(1, 1)))
model.add(Conv2D(filters=25,
kernel_size=(5, 5),
strides=(2, 2),
activation='relu',
padding="VALID",
kernel_initializer=random_normal(mean=0, stddev=.1),
kernel_regularizer=l2(.001)))
model.add(Flatten())
model.add(Dense(2, activation='relu', kernel_initializer=random_normal(mean=0, stddev=.1), kernel_regularizer=l2(.001)))
model.add(Dense(2, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.sgd(lr=.001, momentum=0.9),
metrics=['accuracy'])
EDIT 1
は... 1つのエポックのためのトレーニングを実行しているの出力である
Epoch 1/2
500/78750 [..............................] - ETA: 664s - loss: 1.3999 - acc: 0.9460
1000/78750 [..............................] - ETA: 652s - loss: 1.3713 - acc: 0.9500
1500/78750 [..............................] - ETA: 648s - loss: 1.3897 - acc: 0.9460
2000/78750 [..............................] - ETA: 648s - loss: 1.3970 - acc: 0.9420
2500/78750 [..............................] - ETA: 646s - loss: 1.3965 - acc: 0.9376
3000/78750 [>.............................] - ETA: 640s - loss: 1.3972 - acc: 0.9373
3500/78750 [>.............................] - ETA: 636s - loss: 1.3886 - acc: 0.9377
4000/78750 [>.............................] - ETA: 628s - loss: 1.3886 - acc: 0.9403
4500/78750 [>.............................] - ETA: 625s - loss: 1.3857 - acc: 0.9400
5000/78750 [>.............................] - ETA: 619s - loss: 1.3813 - acc: 0.9416
5500/78750 [=>............................] - ETA: 612s - loss: 1.3773 - acc: 0.9436
6000/78750 [=>............................] - ETA: 608s - loss: 1.3756 - acc: 0.9447
6500/78750 [=>............................] - ETA: 606s - loss: 1.3735 - acc: 0.9454
7000/78750 [=>............................] - ETA: 602s - loss: 1.3733 - acc: 0.9466
7500/78750 [=>............................] - ETA: 597s - loss: 1.3709 - acc: 0.9481
8000/78750 [==>...........................] - ETA: 594s - loss: 1.3688 - acc: 0.9480
8500/78750 [==>...........................] - ETA: 589s - loss: 1.3672 - acc: 0.9485
9000/78750 [==>...........................] - ETA: 584s - loss: 1.3656 - acc: 0.9491
9500/78750 [==>...........................] - ETA: 580s - loss: 1.3642 - acc: 0.9491
10000/78750 [==>...........................] - ETA: 576s - loss: 1.3629 - acc: 0.9497
10500/78750 [===>..........................] - ETA: 571s - loss: 1.3625 - acc: 0.9494
11000/78750 [===>..........................] - ETA: 567s - loss: 1.3615 - acc: 0.9495
11500/78750 [===>..........................] - ETA: 562s - loss: 1.3604 - acc: 0.9496
12000/78750 [===>..........................] - ETA: 558s - loss: 1.3596 - acc: 0.9496
12500/78750 [===>..........................] - ETA: 554s - loss: 1.3599 - acc: 0.9496
13000/78750 [===>..........................] - ETA: 549s - loss: 1.3591 - acc: 0.9494
13500/78750 [====>.........................] - ETA: 545s - loss: 1.3588 - acc: 0.9496
14000/78750 [====>.........................] - ETA: 541s - loss: 1.3588 - acc: 0.9496
14500/78750 [====>.........................] - ETA: 537s - loss: 1.3581 - acc: 0.9497
15000/78750 [====>.........................] - ETA: 533s - loss: 1.3577 - acc: 0.9497
15500/78750 [====>.........................] - ETA: 529s - loss: 1.3571 - acc: 0.9503
16000/78750 [=====>........................] - ETA: 525s - loss: 1.3568 - acc: 0.9502
16500/78750 [=====>........................] - ETA: 520s - loss: 1.3563 - acc: 0.9498
17000/78750 [=====>........................] - ETA: 515s - loss: 1.3557 - acc: 0.9500
17500/78750 [=====>........................] - ETA: 510s - loss: 1.3552 - acc: 0.9501
18000/78750 [=====>........................] - ETA: 506s - loss: 1.3547 - acc: 0.9504
18500/78750 [======>.......................] - ETA: 502s - loss: 1.3544 - acc: 0.9504
19000/78750 [======>.......................] - ETA: 497s - loss: 1.3540 - acc: 0.9502
19500/78750 [======>.......................] - ETA: 492s - loss: 1.3537 - acc: 0.9502
20000/78750 [======>.......................] - ETA: 488s - loss: 1.3533 - acc: 0.9501
20500/78750 [======>.......................] - ETA: 483s - loss: 1.3529 - acc: 0.9497
21000/78750 [=======>......................] - ETA: 479s - loss: 1.3525 - acc: 0.9496
21500/78750 [=======>......................] - ETA: 475s - loss: 1.3522 - acc: 0.9500
22000/78750 [=======>......................] - ETA: 471s - loss: 1.3518 - acc: 0.9498
22500/78750 [=======>......................] - ETA: 466s - loss: 1.3515 - acc: 0.9497
23000/78750 [=======>......................] - ETA: 462s - loss: 1.3512 - acc: 0.9499
23500/78750 [=======>......................] - ETA: 458s - loss: 1.3509 - acc: 0.9496
24000/78750 [========>.....................] - ETA: 454s - loss: 1.3506 - acc: 0.9495
24500/78750 [========>.....................] - ETA: 450s - loss: 1.3503 - acc: 0.9499
25000/78750 [========>.....................] - ETA: 445s - loss: 1.3501 - acc: 0.9501
25500/78750 [========>.....................] - ETA: 441s - loss: 1.3498 - acc: 0.9500
26000/78750 [========>.....................] - ETA: 437s - loss: 1.3496 - acc: 0.9501
26500/78750 [=========>....................] - ETA: 433s - loss: 1.3494 - acc: 0.9503
27000/78750 [=========>....................] - ETA: 428s - loss: 1.3491 - acc: 0.9501
27500/78750 [=========>....................] - ETA: 424s - loss: 1.3489 - acc: 0.9501
28000/78750 [=========>....................] - ETA: 419s - loss: 1.3487 - acc: 0.9501
28500/78750 [=========>....................] - ETA: 415s - loss: 1.3484 - acc: 0.9503
29000/78750 [==========>...................] - ETA: 411s - loss: 1.3482 - acc: 0.9503
29500/78750 [==========>...................] - ETA: 407s - loss: 1.3480 - acc: 0.9501
30000/78750 [==========>...................] - ETA: 403s - loss: 1.3478 - acc: 0.9503
30500/78750 [==========>...................] - ETA: 399s - loss: 1.3476 - acc: 0.9501
31000/78750 [==========>...................] - ETA: 395s - loss: 1.3474 - acc: 0.9502
31500/78750 [===========>..................] - ETA: 391s - loss: 1.3472 - acc: 0.9501
32000/78750 [===========>..................] - ETA: 387s - loss: 1.3470 - acc: 0.9501
32500/78750 [===========>..................] - ETA: 383s - loss: 1.3468 - acc: 0.9502
33000/78750 [===========>..................] - ETA: 379s - loss: 1.3467 - acc: 0.9501
33500/78750 [===========>..................] - ETA: 375s - loss: 1.3465 - acc: 0.9501
34000/78750 [===========>..................] - ETA: 371s - loss: 1.3464 - acc: 0.9503
34500/78750 [============>.................] - ETA: 367s - loss: 1.3462 - acc: 0.9502
35000/78750 [============>.................] - ETA: 363s - loss: 1.3461 - acc: 0.9503
35500/78750 [============>.................] - ETA: 358s - loss: 1.3459 - acc: 0.9503
36000/78750 [============>.................] - ETA: 354s - loss: 1.3458 - acc: 0.9502
36500/78750 [============>.................] - ETA: 350s - loss: 1.3456 - acc: 0.9504
37000/78750 [=============>................] - ETA: 346s - loss: 1.3455 - acc: 0.9504
37500/78750 [=============>................] - ETA: 341s - loss: 1.3454 - acc: 0.9505
38000/78750 [=============>................] - ETA: 337s - loss: 1.3452 - acc: 0.9506
38500/78750 [=============>................] - ETA: 333s - loss: 1.3451 - acc: 0.9506
39000/78750 [=============>................] - ETA: 329s - loss: 1.3450 - acc: 0.9506
39500/78750 [==============>...............] - ETA: 325s - loss: 1.3449 - acc: 0.9506
40000/78750 [==============>...............] - ETA: 321s - loss: 1.3448 - acc: 0.9508
40500/78750 [==============>...............] - ETA: 317s - loss: 1.3447 - acc: 0.9509
41000/78750 [==============>...............] - ETA: 313s - loss: 1.3445 - acc: 0.9507
41500/78750 [==============>...............] - ETA: 309s - loss: 1.3444 - acc: 0.9506
42000/78750 [===============>..............] - ETA: 304s - loss: 1.3443 - acc: 0.9507
42500/78750 [===============>..............] - ETA: 300s - loss: 1.3442 - acc: 0.9508
43000/78750 [===============>..............] - ETA: 296s - loss: 1.3441 - acc: 0.9508
43500/78750 [===============>..............] - ETA: 292s - loss: 1.3440 - acc: 0.9508
44000/78750 [===============>..............] - ETA: 287s - loss: 1.3439 - acc: 0.9508
44500/78750 [===============>..............] - ETA: 283s - loss: 1.3438 - acc: 0.9509
45000/78750 [================>.............] - ETA: 279s - loss: 1.3438 - acc: 0.9509
45500/78750 [================>.............] - ETA: 275s - loss: 1.3437 - acc: 0.9511
46000/78750 [================>.............] - ETA: 271s - loss: 1.3436 - acc: 0.9510
46500/78750 [================>.............] - ETA: 267s - loss: 1.3435 - acc: 0.9512
47000/78750 [================>.............] - ETA: 263s - loss: 1.3434 - acc: 0.9513
47500/78750 [=================>............] - ETA: 259s - loss: 1.3433 - acc: 0.9512
48000/78750 [=================>............] - ETA: 255s - loss: 1.3432 - acc: 0.9513
48500/78750 [=================>............] - ETA: 250s - loss: 1.3431 - acc: 0.9512
49000/78750 [=================>............] - ETA: 246s - loss: 1.3430 - acc: 0.9511
49500/78750 [=================>............] - ETA: 242s - loss: 1.3429 - acc: 0.9511
50000/78750 [==================>...........] - ETA: 238s - loss: 1.3428 - acc: 0.9513
50500/78750 [==================>...........] - ETA: 233s - loss: 1.3428 - acc: 0.9514
51000/78750 [==================>...........] - ETA: 229s - loss: 1.3427 - acc: 0.9514
51500/78750 [==================>...........] - ETA: 225s - loss: 1.3426 - acc: 0.9514
52000/78750 [==================>...........] - ETA: 221s - loss: 1.3427 - acc: 0.9515
52500/78750 [===================>..........] - ETA: 217s - loss: 1.3426 - acc: 0.9515
53000/78750 [===================>..........] - ETA: 213s - loss: 1.3425 - acc: 0.9515
53500/78750 [===================>..........] - ETA: 209s - loss: 1.3425 - acc: 0.9516
54000/78750 [===================>..........] - ETA: 204s - loss: 1.3424 - acc: 0.9515
54500/78750 [===================>..........] - ETA: 200s - loss: 1.3423 - acc: 0.9513
55000/78750 [===================>..........] - ETA: 196s - loss: 1.3423 - acc: 0.9515
55500/78750 [====================>.........] - ETA: 192s - loss: 1.3422 - acc: 0.9514
56000/78750 [====================>.........] - ETA: 188s - loss: 1.3421 - acc: 0.9513
56500/78750 [====================>.........] - ETA: 184s - loss: 1.3420 - acc: 0.9513
57000/78750 [====================>.........] - ETA: 179s - loss: 1.3420 - acc: 0.9513
57500/78750 [====================>.........] - ETA: 175s - loss: 1.3419 - acc: 0.9513
58000/78750 [=====================>........] - ETA: 171s - loss: 1.3419 - acc: 0.9513
58500/78750 [=====================>........] - ETA: 167s - loss: 1.3418 - acc: 0.9512
59000/78750 [=====================>........] - ETA: 163s - loss: 1.3417 - acc: 0.9510
59500/78750 [=====================>........] - ETA: 159s - loss: 1.3417 - acc: 0.9511
60000/78750 [=====================>........] - ETA: 155s - loss: 1.3416 - acc: 0.9511
60500/78750 [======================>.......] - ETA: 150s - loss: 1.3415 - acc: 0.9512
61000/78750 [======================>.......] - ETA: 146s - loss: 1.3414 - acc: 0.9512
61500/78750 [======================>.......] - ETA: 142s - loss: 1.3414 - acc: 0.9512
62000/78750 [======================>.......] - ETA: 138s - loss: 1.3413 - acc: 0.9512
62500/78750 [======================>.......] - ETA: 134s - loss: 1.3412 - acc: 0.9513
63000/78750 [=======================>......] - ETA: 130s - loss: 1.3412 - acc: 0.9514
63500/78750 [=======================>......] - ETA: 126s - loss: 1.3411 - acc: 0.9514
64000/78750 [=======================>......] - ETA: 121s - loss: 1.3411 - acc: 0.9515
64500/78750 [=======================>......] - ETA: 117s - loss: 1.3411 - acc: 0.9516
65000/78750 [=======================>......] - ETA: 113s - loss: 1.3410 - acc: 0.9516
65500/78750 [=======================>......] - ETA: 109s - loss: 1.3412 - acc: 0.9516
66000/78750 [========================>.....] - ETA: 105s - loss: 1.3411 - acc: 0.9517
66500/78750 [========================>.....] - ETA: 101s - loss: 1.3410 - acc: 0.9516
67000/78750 [========================>.....] - ETA: 97s - loss: 1.3410 - acc: 0.9516
67500/78750 [========================>.....] - ETA: 92s - loss: 1.3409 - acc: 0.9516
68000/78750 [========================>.....] - ETA: 88s - loss: 1.3408 - acc: 0.9515
68500/78750 [=========================>....] - ETA: 84s - loss: 1.3408 - acc: 0.9515
69000/78750 [=========================>....] - ETA: 80s - loss: 1.3407 - acc: 0.9515
69500/78750 [=========================>....] - ETA: 76s - loss: 1.3407 - acc: 0.9515
70000/78750 [=========================>....] - ETA: 72s - loss: 1.3406 - acc: 0.9515
70500/78750 [=========================>....] - ETA: 68s - loss: 1.3405 - acc: 0.9516
71000/78750 [==========================>...] - ETA: 64s - loss: 1.3405 - acc: 0.9516
71500/78750 [==========================>...] - ETA: 59s - loss: 1.3404 - acc: 0.9516
72000/78750 [==========================>...] - ETA: 55s - loss: 1.3404 - acc: 0.9517
72500/78750 [==========================>...] - ETA: 51s - loss: 1.3403 - acc: 0.9518
73000/78750 [==========================>...] - ETA: 47s - loss: 1.3403 - acc: 0.9517
73500/78750 [===========================>..] - ETA: 43s - loss: 1.3402 - acc: 0.9518
74000/78750 [===========================>..] - ETA: 39s - loss: 1.3401 - acc: 0.9517
74500/78750 [===========================>..] - ETA: 35s - loss: 1.3401 - acc: 0.9518
75000/78750 [===========================>..] - ETA: 31s - loss: 1.3400 - acc: 0.9518
75500/78750 [===========================>..] - ETA: 26s - loss: 1.3401 - acc: 0.9519
76000/78750 [===========================>..] - ETA: 22s - loss: 1.3400 - acc: 0.9519
76500/78750 [============================>.] - ETA: 18s - loss: 1.3400 - acc: 0.9519
77000/78750 [============================>.] - ETA: 14s - loss: 1.3399 - acc: 0.9519
77500/78750 [============================>.] - ETA: 10s - loss: 1.3399 - acc: 0.9519
78000/78750 [============================>.] - ETA: 6s - loss: 1.3398 - acc: 0.9518
78500/78750 [============================>.] - ETA: 2s - loss: 1.3398 - acc: 0.9518
78750/78750 [==============================] - 855s - loss: 1.3397 - acc: 0.9518 - val_loss: 1.3321 - val_acc: 0.9523
とここにありますモデル概要()...
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 72, 72, 25) 2525
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 25) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 30, 30, 25) 30650
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 15, 15, 25) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 6, 6, 25) 15650
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 5, 5, 25) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 1, 1, 25) 15650
_________________________________________________________________
flatten_1 (Flatten) (None, 25) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 52
_________________________________________________________________
dense_2 (Dense) (None, 2) 6
=================================================================
Total params: 64,533
Trainable params: 64,533
Non-trainable params: 0
非常に大きなカーネルサイズを使用していることに気付きました。これにより、モデルのトレーニングを改善するかもしれない貴重な情報をたくさん捨てることができます。通常の3x3よりも高い値を選んだのはなぜですか? – petezurich
Sergiiの提案に加えて、fit()関数で 'class_weight'パラメータを設定しようとしましたか?また、層にBatchnormalizationを追加することを検討する必要があります。 – petezurich