itertoolsは、私が望んだと思うようには機能しません。サブレンジは、計算されたディメンションに対してのみ有効です。入力を簡単にするために、(0,1)の代わりに(0,8)の四角形を考えるつもりです。最初の分割では、4つの正方形が得られます。 (0,4)、(4,8)を見てみましょう。私たちは今、しかし、あなたの組み合わせだけ以来、すべての次元で同じ開始範囲とスペースのためすべて座標を見つけることができます
(0, 2), (4, 6)
(0, 2), (6, 8)
(2, 4), (4, 6)
(2, 4), (6, 8)
を与え、X = 2とy = 6でこれを分割したいですそれは次元を区別しない。あなたがやろうとしているすべてが一度にすべての可能性を生成することである場合上記の場合、それはまた、
(0, 6), (2, 4)
を生成し、これはフィールドをカバーします。ただし、ツリー構造は失われます。
は、私は、これはあなたがその中核に、何をしたいかもしれないと思う:すべての組み合わせは、あなたの与えられた座標範囲の「クワッド」スプリット(2^N分割)に入ります。説明のために、私はあなたの6Dのケースにとどまっていましたが、サイズ2の拡張範囲を選択しました。各ディメンションの範囲が異なります。すでに複数の分割を行っていたかのように、6Dハイパーキューブ瞬間。
このコードは最初に、最初の座標を半分に分割し、2つの新しい間隔をタプル(ペア)に保持します。次に、itertools.productをペアのリストに適用して、6つの各ディメンションの下位/上位間隔のすべての組み合わせを生成します。
import itertools as itr
#initial root coordinates
H = [(10.0,12.0), (8.0,10.0), (6.0,8.0), (4.0,6.0), (2.0,4.0), (0.0,2.0)]
#get all the coordinates separately
choice = []
for coord in H:
low = coord[0]
top = coord[1]
mid = (low+top)/2
choice.append(((low, mid), (mid, top)))
print "choice list:", choice
#will print 924
quad_split = list(itr.product(*choice))
print len(quad_split)
出力:
choice list: [((10.0, 11.0), (11.0, 12.0)), ((8.0, 9.0), (9.0, 10.0)), ((6.0, 7.0), (7.0, 8.0)), ((4.0, 5.0), (5.0, 6.0)), ((2.0, 3.0), (3.0, 4.0)), ((0.0, 1.0), (1.0, 2.0))]
64 half-sized hypercubes:
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((10.0, 11.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (8.0, 9.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (6.0, 7.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (4.0, 5.0), (3.0, 4.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (2.0, 3.0), (1.0, 2.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (0.0, 1.0))
((11.0, 12.0), (9.0, 10.0), (7.0, 8.0), (5.0, 6.0), (3.0, 4.0), (1.0, 2.0))
あなたは一つのノード(:[(0.5,1)、(0,0.5)] '例えば'Node2)の部分の意味を説明できますか?私は'Node:(x、y、level) 'のようなものを期待しています。なぜあなたの例では各ノードに4つのコンポーネントがあるのか理解できません。 – Felix
これらの座標は、各次元の平方の範囲です。 – Prune
@Pruneと同様に、それらは各次元の四角形の範囲です。今私は座標を構築することに懸念しています。レベルは別のフィールドに格納され、ツリーの実装の一部です(別のトピック)。私は、正方形範囲を使用して、その正方形内にデータポイントが含まれているかどうかを確認します。正方形内に複数のデータポイントがある場合は、正方形を再び4つの小さな正方形に分割します。これは、座標が少し乱雑になったときです。 – vFlav