2
と形状の不一致の問題は、私がコードで何が間違っていることを確認していません。Tensorflow:私はfeed_dictとしてx_data渡そうとしたが、エラーの下に取得しています1次元データ
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_12' with dtype int32 and shape [1000]
[[Node: x_12 = Placeholder[dtype=DT_INT32, shape=[1000], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
マイコード:
import tensorflow as tf
import numpy as np
model = tf.global_variables_initializer()
#define x and y
x = tf.placeholder(shape=[1000],dtype=tf.int32,name="x")
y = tf.Variable(5*x**2-3*x+15,name = "y")
x_data = tf.pack(np.random.randint(0,100,size=1000))
print(x_data)
print(x)
with tf.Session() as sess:
sess.run(model)
print(sess.run(y,feed_dict={x:x_data}))
私はx
とx_data
の形状をチェックし、それは私が1次元データで働いている同じ
Tensor("pack_8:0", shape=(1000,), dtype=int32)
Tensor("x_14:0", shape=(1000,), dtype=int32)
です。 お手数ですが、ありがとうございます!