2017-01-27 7 views
0

誰も私のコードで何が間違っているのか教えてください。pymc3にpymc2を適合させることができません

私は一般的に物理式を解くためのpymc2のカジュアルユーザーです。私はpymc3に適合させるのに苦労しています。ドキュメントは私には不明瞭です。また、私は...私は私の問題が何であるかを知らないためか、フォーラムで私は当てはめ値の最初の推測を取得するためにfind_MAPメソッドを使用

を私の問題を認識しなかったが、この最初の推測であっても内部(completly間違っていません物理的な限界)、警告には離散変数(間違っている)があり、勾配が利用できないことを意味します。

目的は拡散方程式にいくつかのパラメータを当てはめることです:ここではα0、α1およびεは連続的で事前に均一に分布しています。長いデバッグ時間の間、私はコードを反復最適化したので、コード自体は面白いとは思わない。ちょうどpymc2バージョンが正常で動作していることを知っています。私は問題がどこにあるのかわからないので、私は 'simul_DifferentialEq'関数の内部も与えますが、pymc3のものは対応するコメントの下にあります。

C0=Cowl0 = 10 # in mmol/l: concentration at the surface (at t=0), sometimes noted C0 
Dsw = 1.6 # in cm^2.d-1 
Cdefault = 1e-10 # concentration at t=0, depth>0 

# maximum depth and time in the simulation for solving the ED (assuming it begins at x=t=0) 
maxdepth = 17 # in cm 
maxtime = 1 # in day 

#steps in depth and time in the simulation for solving the ED 
Deltax = 0.05# in cm 
Deltat = 0.02# in day 

############################################## 
# internal cooking 

from numpy import arange, empty, zeros 
from solve_ED_crank import sph_2Dfunct 
depth = (arange(maxdepth/Deltax +1))*Deltax # in cm 
time = (arange(maxtime/Deltat +1))*Deltat # in day 
beta = Dsw * Deltat/(2 * Deltax) 

matA = zeros([len(depth),len(depth)]) 
matB = zeros([len(depth),len(depth)]) 
matC = empty([len(depth),len(depth)]) 

concentration_t0 = empty(len(depth)) 
concentration_t0[1:] = Cdefault 
concentration_t0[0] = Cowl0 
concentration = sph_2Dfunct(sizex=len(depth), 
          sizet=len(time), 
          firstline=concentration_t0) 

コメント火曜日〜12時7月2日:30

import numpy as np 
from scipy.interpolate import interp1d 
import pymc3 as pm3 
import theano.tensor as tt 
import theano.compile 
import config 
@theano.compile.ops.as_op(itypes=[tt.dscalar,tt.dscalar,tt.dscalar], 
          otypes=[tt.dvector]) 
def simul_DifferentialEq(alpha0,alpha1,epsilon): 
    observed_depth = np.array([0.5,1.5,3,5,7,9,13,17])# in cm 
    observed_values = np.array([6.25,2.75,1.25,1.25,1.5,1.75,1.5,1])# mmol.l-1 
    #useful ? 
    observed_values = observed_values[np.argsort(-observed_depth)] 
    observed_depth = -np.sort(-observed_depth) 
    depth = config.depth 
    matA = config.matA 
    matB = config.matB 
    matC = config.matC 
    concentration = config.concentration 
    alpha = alpha0 * np.exp(-alpha1*depth) # in day^-1 
    # simplification for a Constant phi 
    phi = np.empty(len(depth)) 
    phi[:]=0.6 
    ######################### 
    beta = config.beta * phi * epsilon # dimensionless 
    delta = beta * phi/config.Deltax 
    eta = alpha * config.Deltat 
    f1 = f2 = delta 
    f3 = 1 - 2*delta + eta/2 
    matB[0,0] = f1[0] - eta[0]/2 +1 
    matB[0,1] = matA[0,1] = -2*f1[0] 
    matB[0,2] = matA[0,2] = delta[0] 
    matB[-1,-1] = f2[-1] + eta[-1]/2 +1 
    matB[-1,-2] = matA[-1,-2] = -2*f2[-1] 
    matB[-1,-3] = matA[-1,-3] = delta[-1] 
    matB[range(1,concentration.sizex-1), 
     range(1,concentration.sizex-1)] = \ 
     f3[1:concentration.sizex-1] 
    matA[range(1,concentration.sizex-1), 
     range(concentration.sizex-2)] = \ 
     matB[range(1,concentration.sizex-1), 
     range(concentration.sizex-2)] = \ 
     f1[1:concentration.sizex-1] 
    matA[range(1,concentration.sizex-1), 
     range(2,concentration.sizex)] = \ 
     matB[range(1,concentration.sizex-1), 
     range(2,concentration.sizex)] = \ 
     f2[1:concentration.sizex-1] 
    matB[range(1,concentration.sizex),0] = -eta[1:] 
    matA[range(concentration.sizex), 
     range(concentration.sizex)] = \ 
     matB[range(concentration.sizex), 
     range(concentration.sizex)] -2 
    matA[0,0] += eta[0] 
    matC = np.dot(np.linalg.matrix_power(-matA,-1),matB) 
    for tcount in range(concentration.sizet-1): 
     #the variable 'temp' has no interest (just convenient for debugging) 
     temp = np.dot(matC,concentration.values[:,tcount]) 
     # condition limit 
     temp[0] = config.C0 
     # a priori useless (but convenient for debugging)) 
     temp[np.where(temp>config.C0)] = config.C0 
     # everything for that...  
     concentration.values[:,tcount+1] = temp 
    interpolated_concentration = interp1d(depth,concentration.values[:,-1]) 
    return interpolated_concentration(observed_depth) 
# the pymc3 stuff is below 
model = pm3.Model() 
with model: 
    alpha0 = pm3.Uniform("alpha0",-2,0) 
    alpha1 = pm3.Uniform("alpha1",-1,2) 
    epsilon = pm3.Uniform("epsilon",0.1,15) 
    DifferentialEq = simul_DifferentialEq(alpha0,alpha1,epsilon) 
    # it is awkward to repeat observed values 
    #some previous tries made me think it could solve the problem but it didn't 
    observed_depth = np.array([0.5,1.5,3,5,7,9,13,17])# in cm 
    observed_values = np.array([6.25,2.75,1.25,1.25,1.5,1.75,1.5,1])# mmol.l-1 
    # useful ? 
    observed_values = observed_values[np.argsort(-observed_depth)] 
    observed_depth = -np.sort(-observed_depth) 
    obs = pm3.Normal('obs', mu=DifferentialEq, sd=0.1, observed=observed_values) 
    print('running test170127, find_MAP...') 
    testfindmap = pm3.find_MAP() 

はconfig.pyのコンテンツがあり、ご清聴ありがとうございました。

私は最後の行(すなわちfind_MAPのものを。)に置き換え:私は追加することになり

Auto-assigning NUTS sampler... 
INFO:pymc3:Auto-assigning NUTS sampler... 
Initializing NUTS using advi... 
INFO:pymc3:Initializing NUTS using advi... 
Traceback (most recent call last): 

    File "<ipython-input-1-8395e07601b2>", line 1, in <module> 
    runfile('/Users/steph/work/profiles/profiles-pymc/test170127.py', wdir='/Users/steph/work/profiles/profiles-pymc') 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/spyder/utils/site/sitecustomize.py", line 866, in runfile 
    execfile(filename, namespace) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/spyder/utils/site/sitecustomize.py", line 102, in execfile 
    exec(compile(f.read(), filename, 'exec'), namespace) 

    File "/Users/steph/work/profiles/profiles-pymc/test170127.py", line 84, in <module> 
    pm3.sample(500) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/pymc3/sampling.py", line 149, in sample 
    start_, step = init_nuts(init=init, n_init=n_init, model=model) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/pymc3/sampling.py", line 434, in init_nuts 
    v_params = pm.variational.advi(n=n_init) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/pymc3/variational/advi.py", line 139, in advi 
    updates = optimizer(loss=-1 * elbo, param=[uw_shared]) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/pymc3/variational/advi.py", line 259, in optimizer 
    grad = tt.grad(loss, param_) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 561, in grad 
    grad_dict, wrt, cost_name) 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1324, in _populate_grad_dict 
    rval = [access_grad_cache(elem) for elem in wrt] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1324, in <listcomp> 
    rval = [access_grad_cache(elem) for elem in wrt] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in access_term_cache 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 973, in <listcomp> 
    output_grads = [access_grad_cache(var) for var in node.outputs] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1279, in access_grad_cache 
    term = access_term_cache(node)[idx] 

    File "/Users/steph/anaconda/lib/python3.5/site-packages/theano/gradient.py", line 1113, in access_term_cache 
    input_grads = node.op.grad(inputs, new_output_grads) 

AttributeError: 'FromFunctionOp' object has no attribute 'grad' 

::私は続けるならば、私はメインのコードを実行したときに、私が取得

pm3.sample(500) 

find_MAPを呼び出すと、コードはエラーなく実行されますが、結果の値はばかげて見えますが、この二重警告が表示されます。

Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization fmin_powell.WARNING:pymc3:Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization fmin_powell. 
    Optimization terminated successfully. 
      Current function value: 36.569283 
      Iterations: 10 
      Function evaluations: 415 
+0

"config"のものを実際の値に置き換えることはできますか? '' 'find_MAP'''はscipy minimizerのラッパーです。(NUTSやMetropolisを使って)サンプルすればエラーが出ますか? – aloctavodia

+0

1. NUTSとサンプルの両方が私に 'AttributeError:' FromFunctionOp 'オブジェクトには、一連のメッセージの後に' grad '属性がありません。 –

+0

再現可能な例を投稿できますか? – aloctavodia

答えて

1

pymc3(黒いボックスのような)とは独立して、 'thenano'デコレータを介して与えられた確定的な関数は、勾配が定義されていないので、何時間も必要なものを使用することはできません(pymc3のドキュメントは間違いなく痛みです)勾配。なぜそれがpymc2の問題ではなかったのか、それとも暗黙的なのか分かりません。誰でも私に教えてくれますか? 私のコードのような非勾配法でうまく動作:

step = pm3.Metropolis() 
trace = pm3.sample(10000,step) 

しかし、私はまだ取得しないことfind_MAPの出力である、それはノーマルと制服の変数の違い:最初のケースでfind_MAPは返すように思えます値としての推測。後者の場合、find_MAPは、変数名に 'interval'という接尾辞が追加されたもの(what is it?!)を返します。

+0

遅く返事を申し訳ありません。AFAIK PyMC2にはグラデーションベースのメソッドがありませんでした。実際にNUTSを実装することは、Theanoを採用しPyMC2からPyMC3に移行する理由の1つでした。私はあなたがグラデーションを提供する場合は、グラデーションベースのメソッドでデコレータを使用することができると思うが、私はこれについてはわからないし、私は自分自身を試したことがありません(私はこれを探検したいですが)。 find_MAPについてのあなたの質問が既に答えられています。 ドキュメントについて私は改善の余地が十分あると思います。あなたはそれについての問題を開いたり、それを改善するPRを送りたいですか?貢献は歓迎です! – aloctavodia

+0

あなたの注意のおかげで、私のfind_mapの質問は確かにdetailledされ、ここで答えたhttp://stackoverflow.com/questions/42146962/what-does-the-find-map-output-mean-in-pymc3と使用するいくつかの他のトラブルpymc3はそこに記述されているhttp://stackoverflow.com/questions/42205123/how-to-fit-a-method-belonging-to-an-instance-with-pymc3 –

関連する問題