私はPythonにはとても新しいですが、私は自分のプロジェクトにPythonを使用する必要があります。私は以下のコードの一部を理解していない点があります:関数、defを使って定義されていない
result['data'] = pool.map(image_processor, im_info)
だから、私はpool.map(somefunc,[list of params])
は、MATLABのparfor
に似て考え出しました。私が理解していないのは、image_processor
に関連する部分です。私は関数でなければならないと仮定していますが、defを使用するものとして定義されていません。コードは完璧に動作しており、pdbでトレースしようとしましたが、バッチで意図したとおりに画像を処理しているようです。これは非常に些細な質問かもしれません、私はちょうどPythonの初心者です。では、image_processorが動作する順番はどうですか?また、この関数でどのように変更を加えることができますか(複数のパラメータを渡していますが、defを使って関数が定義されていないため、 。
#Data layer for video. Change flow_frames and RGB_frames to be the path to the flow and RGB frames.
import sys
sys.path.append('../../python')
import caffe
import io
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import scipy.misc
import time
import pdb
import glob
import pickle as pkl
import random
import h5py
from multiprocessing import Pool
from threading import Thread
import skimage.io
import copy
flow_frames = 'flow_images/'
RGB_frames = 'frames/'
test_frames = 16
train_frames = 16
test_buffer = 3
train_buffer = 24
def processImageCrop(im_info, transformer, flow):
im_path = im_info[0]
im_crop = im_info[1]
im_reshape = im_info[2]
im_flip = im_info[3]
data_in = caffe.io.load_image(im_path)
if (data_in.shape[0] < im_reshape[0]) | (data_in.shape[1] < im_reshape[1]):
data_in = caffe.io.resize_image(data_in, im_reshape)
if im_flip:
data_in = caffe.io.flip_image(data_in, 1, flow)
data_in = data_in[im_crop[0]:im_crop[2], im_crop[1]:im_crop[3], :]
processed_image = transformer.preprocess('data_in',data_in)
return processed_image
class ImageProcessorCrop(object):
def __init__(self, transformer, flow):
self.transformer = transformer
self.flow = flow
def __call__(self, im_info):
return processImageCrop(im_info, self.transformer, self.flow)
class sequenceGeneratorVideo(object):
def __init__(self, buffer_size, clip_length, num_videos, video_dict, video_order):
self.buffer_size = buffer_size
self.clip_length = clip_length
self.N = self.buffer_size*self.clip_length
self.num_videos = num_videos
self.video_dict = video_dict
self.video_order = video_order
self.idx = 0
def __call__(self):
label_r = []
im_paths = []
im_crop = []
im_reshape = []
im_flip = []
if self.idx + self.buffer_size >= self.num_videos:
idx_list = range(self.idx, self.num_videos)
idx_list.extend(range(0, self.buffer_size-(self.num_videos-self.idx)))
else:
idx_list = range(self.idx, self.idx+self.buffer_size)
for i in idx_list:
key = self.video_order[i]
label = self.video_dict[key]['label']
video_reshape = self.video_dict[key]['reshape']
video_crop = self.video_dict[key]['crop']
label_r.extend([label]*self.clip_length)
im_reshape.extend([(video_reshape)]*self.clip_length)
r0 = int(random.random()*(video_reshape[0] - video_crop[0]))
r1 = int(random.random()*(video_reshape[1] - video_crop[1]))
im_crop.extend([(r0, r1, r0+video_crop[0], r1+video_crop[1])]*self.clip_length)
f = random.randint(0,1)
im_flip.extend([f]*self.clip_length)
rand_frame = int(random.random()*(self.video_dict[key]['num_frames']-self.clip_length)+1+1)
frames = []
for i in range(rand_frame,rand_frame+self.clip_length):
frames.append(self.video_dict[key]['frames'] %i)
im_paths.extend(frames)
im_info = zip(im_paths,im_crop, im_reshape, im_flip)
self.idx += self.buffer_size
if self.idx >= self.num_videos:
self.idx = self.idx - self.num_videos
return label_r, im_info
def advance_batch(result, sequence_generator, image_processor, pool):
label_r, im_info = sequence_generator()
#tmp = image_processor(im_info[0])
result['data'] = pool.map(image_processor, im_info)
result['label'] = label_r
cm = np.ones(len(label_r))
cm[0::16] = 0
result['clip_markers'] = cm
class BatchAdvancer():
def __init__(self, result, sequence_generator, image_processor, pool):
self.result = result
self.sequence_generator = sequence_generator
self.image_processor = image_processor
self.pool = pool
def __call__(self):
return advance_batch(self.result, self.sequence_generator, self.image_processor, self.pool)
class videoRead(caffe.Layer):
def initialize(self):
self.train_or_test = 'test'
self.flow = False
self.buffer_size = test_buffer #num videos processed per batch
self.frames = test_frames #length of processed clip
self.N = self.buffer_size*self.frames
self.idx = 0
self.channels = 3
self.height = 227
self.width = 227
self.path_to_images = RGB_frames
self.video_list = 'ucf101_split1_testVideos.txt'
def setup(self, bottom, top):
random.seed(10)
self.initialize()
f = open(self.video_list, 'r')
f_lines = f.readlines()
f.close()
video_dict = {}
current_line = 0
self.video_order = []
for ix, line in enumerate(f_lines):
video = line.split(' ')[0].split('/')[1]
l = int(line.split(' ')[1])
frames = glob.glob('%s%s/*.jpg' %(self.path_to_images, video))
num_frames = len(frames)
video_dict[video] = {}
video_dict[video]['frames'] = frames[0].split('.')[0] + '.%04d.jpg'
video_dict[video]['reshape'] = (240,320)
video_dict[video]['crop'] = (227, 227)
video_dict[video]['num_frames'] = num_frames
video_dict[video]['label'] = l
self.video_order.append(video)
self.video_dict = video_dict
self.num_videos = len(video_dict.keys())
#set up data transformer
shape = (self.N, self.channels, self.height, self.width)
self.transformer = caffe.io.Transformer({'data_in': shape})
self.transformer.set_raw_scale('data_in', 255)
if self.flow:
image_mean = [128, 128, 128]
self.transformer.set_is_flow('data_in', True)
else:
image_mean = [103.939, 116.779, 128.68]
self.transformer.set_is_flow('data_in', False)
channel_mean = np.zeros((3,227,227))
for channel_index, mean_val in enumerate(image_mean):
channel_mean[channel_index, ...] = mean_val
self.transformer.set_mean('data_in', channel_mean)
self.transformer.set_channel_swap('data_in', (2, 1, 0))
self.transformer.set_transpose('data_in', (2, 0, 1))
self.thread_result = {}
self.thread = None
pool_size = 24
self.image_processor = ImageProcessorCrop(self.transformer, self.flow)
self.sequence_generator = sequenceGeneratorVideo(self.buffer_size, self.frames, self.num_videos, self.video_dict, self.video_order)
self.pool = Pool(processes=pool_size)
self.batch_advancer = BatchAdvancer(self.thread_result, self.sequence_generator, self.image_processor, self.pool)
self.dispatch_worker()
self.top_names = ['data', 'label','clip_markers']
print 'Outputs:', self.top_names
if len(top) != len(self.top_names):
raise Exception('Incorrect number of outputs (expected %d, got %d)' %
(len(self.top_names), len(top)))
self.join_worker()
for top_index, name in enumerate(self.top_names):
if name == 'data':
shape = (self.N, self.channels, self.height, self.width)
elif name == 'label':
shape = (self.N,)
elif name == 'clip_markers':
shape = (self.N,)
top[top_index].reshape(*shape)
def reshape(self, bottom, top):
pass
def forward(self, bottom, top):
if self.thread is not None:
self.join_worker()
#rearrange the data: The LSTM takes inputs as [video0_frame0, video1_frame0,...] but the data is currently arranged as [video0_frame0, video0_frame1, ...]
new_result_data = [None]*len(self.thread_result['data'])
new_result_label = [None]*len(self.thread_result['label'])
new_result_cm = [None]*len(self.thread_result['clip_markers'])
for i in range(self.frames):
for ii in range(self.buffer_size):
old_idx = ii*self.frames + i
new_idx = i*self.buffer_size + ii
new_result_data[new_idx] = self.thread_result['data'][old_idx]
new_result_label[new_idx] = self.thread_result['label'][old_idx]
new_result_cm[new_idx] = self.thread_result['clip_markers'][old_idx]
for top_index, name in zip(range(len(top)), self.top_names):
if name == 'data':
for i in range(self.N):
top[top_index].data[i, ...] = new_result_data[i]
elif name == 'label':
top[top_index].data[...] = new_result_label
elif name == 'clip_markers':
top[top_index].data[...] = new_result_cm
self.dispatch_worker()
def dispatch_worker(self):
assert self.thread is None
self.thread = Thread(target=self.batch_advancer)
self.thread.start()
def join_worker(self):
assert self.thread is not None
self.thread.join()
self.thread = None
def backward(self, top, propagate_down, bottom):
pass
class videoReadTrain_flow(videoRead):
def initialize(self):
self.train_or_test = 'train'
self.flow = True
self.buffer_size = train_buffer #num videos processed per batch
self.frames = train_frames #length of processed clip
self.N = self.buffer_size*self.frames
self.idx = 0
self.channels = 3
self.height = 227
self.width = 227
self.path_to_images = flow_frames
self.video_list = 'ucf101_split1_trainVideos.txt'
class videoReadTest_flow(videoRead):
def initialize(self):
self.train_or_test = 'test'
self.flow = True
self.buffer_size = test_buffer #num videos processed per batch
self.frames = test_frames #length of processed clip
self.N = self.buffer_size*self.frames
self.idx = 0
self.channels = 3
self.height = 227
self.width = 227
self.path_to_images = flow_frames
self.video_list = 'ucf101_split1_testVideos.txt'
class videoReadTrain_RGB(videoRead):
def initialize(self):
self.train_or_test = 'train'
self.flow = False
self.buffer_size = train_buffer #num videos processed per batch
self.frames = train_frames #length of processed clip
self.N = self.buffer_size*self.frames
self.idx = 0
self.channels = 3
self.height = 227
self.width = 227
self.path_to_images = RGB_frames
self.video_list = 'ucf101_split1_trainVideos.txt'
class videoReadTest_RGB(videoRead):
def initialize(self):
self.train_or_test = 'test'
self.flow = False
self.buffer_size = test_buffer #num videos processed per batch
self.frames = test_frames #length of processed clip
self.N = self.buffer_size*self.frames
self.idx = 0
self.channels = 3
self.height = 227
self.width = 227
self.path_to_images = RGB_frames
self.video_list = 'ucf101_split1_testVideos.txt'
コードに本当にその周りに '***'がありますか?私はそれが有効なPythonの構文だとは思わない。あなたが強調表示としてそれを意味していた場合、それはStackOverflowコードブロックでは機能しません。 – Barmar
私は以下のコードですべてのマークを付けました(ハイライト/太字にすることを意図していましたが、コード環境では機能しません)。 – dusa
コード内に何かを示すときに、構文的に有効なコメントを使用します。コードサンプルは実行可能である必要があり、誰かが同じエラーを見ることができるようにする必要があります。 –