2010-12-18 22 views
10

Path2Dが交差するかどうかを調べる必要があります。今のところ、私は単純にパスから行の配列を抽出し、これらのいずれかが交差するかどうかを調べることによって行います。しかし、それはO(n^2)の複雑さを持ち、非常に遅いです。それを行うより速い方法がありますか?Path2Dが自己交差するかどうかを調べる

+0

PHPと同等の質問:http://stackoverflow.com/questions/2411636/is-there-an-easy-way-to-detect-line-segment-intersections – finnw

答えて

3

あなたはスイープラインのアルゴリズムを使用してより速く、これを行うことができます:http://en.wikipedia.org/wiki/Sweep_line_algorithm

擬似コード:

Each line has a start point and an end point. Say that `start_x` <= `end_x` for all the lines. 
Create an empty bucket of lines. 
Sort all the points by their x coordinates, and then iterate through the sorted list. 
If the current point is a start point, test its line against all the lines in the bucket, and then add its line to the 
bucket. 
if the current point is an end point, remove its line from the bucket. 

最悪の場合は、まだO(N^2)ですが、平均的なケースは、ここO(NlogN)

+0

ありがとう!しかし、あなたのメソッドの改良点 - バケット内の "above-below"の順序(行の最初の点のy座標でソート)を維持するならば、新しい行はその行の上と下の行に対してのみテストすることができ、 log n)O(n)の代わりに時間の複雑さ。それを見つけた: Rogach

3

では私ですこのアルゴリズムのJava実装:

import java.awt.Point; 
import java.awt.geom.Line2D; 
import java.awt.geom.PathIterator; 
import java.util.*; 

/** 
* Path2D helper functions. 
* <p/> 
* @author Gili Tzabari 
*/ 
public class Path2Ds 
{ 
    /** 
    * Indicates if a Path2D intersects itself. 
    * <p/> 
    * @return true if a Path2D intersects itself 
    */ 
    public static boolean isSelfIntersecting(PathIterator path) 
    { 
     SortedSet<Line2D> lines = getLines(path); 
     if (lines.size() <= 1) 
      return false; 

     Set<Line2D> candidates = new HashSet<Line2D>(); 
     for (Line2D line: lines) 
     { 
      if (Double.compare(line.getP1().distance(line.getP2()), 0) <= 0) 
      { 
       // Lines of length 0 do not cause self-intersection 
       continue; 
      } 
      for (Iterator<Line2D> i = candidates.iterator(); i.hasNext();) 
      { 
       Line2D candidate = i.next(); 

       // Logic borrowed from Line2D.intersectsLine() 
       int lineRelativeToCandidate1 = Line2D.relativeCCW(line.getX1(), line.getY1(), line. 
        getX2(), 
        line.getY2(), candidate.getX1(), candidate.getY1()); 
       int lineRelativeToCandidate2 = Line2D.relativeCCW(line.getX1(), line.getY1(), line. 
        getX2(), 
        line.getY2(), candidate.getX2(), candidate.getY2()); 
       int candidateRelativeToLine1 = Line2D.relativeCCW(candidate.getX1(), 
        candidate.getY1(), 
        candidate.getX2(), candidate.getY2(), line.getX1(), line.getY1()); 
       int candidateRelativeToLine2 = Line2D.relativeCCW(candidate.getX1(), 
        candidate.getY1(), 
        candidate.getX2(), candidate.getY2(), line.getX2(), line.getY2()); 
       boolean intersection = (lineRelativeToCandidate1 * lineRelativeToCandidate2 <= 0) 
        && (candidateRelativeToLine1 * candidateRelativeToLine2 <= 0); 
       if (intersection) 
       { 
        // Lines may share a point, so long as they extend in different directions 
        if (lineRelativeToCandidate1 == 0 && lineRelativeToCandidate2 != 0) 
        { 
         // candidate.P1 shares a point with line 
         if (candidateRelativeToLine1 == 0 && candidateRelativeToLine2 != 0) 
         { 
          // line.P1 == candidate.P1 
          continue; 
         } 
         if (candidateRelativeToLine1 != 0 && candidateRelativeToLine2 == 0) 
         { 
          // line.P2 == candidate.P1 
          continue; 
         } 
         // else candidate.P1 intersects line 
        } 
        else if (lineRelativeToCandidate1 != 0 && lineRelativeToCandidate2 == 0) 
        { 
         // candidate.P2 shares a point with line 
         if (candidateRelativeToLine1 == 0 && candidateRelativeToLine2 != 0) 
         { 
          // line.P1 == candidate.P2 
          continue; 
         } 
         if (candidateRelativeToLine1 != 0 && candidateRelativeToLine2 == 0) 
         { 
          // line.P2 == candidate.P2 
          continue; 
         } 
         // else candidate.P2 intersects line 
        } 
        else 
        { 
         // line and candidate overlap 
        } 
        return true; 
       } 
       if (candidate.getX2() < line.getX1()) 
        i.remove(); 
      } 
      candidates.add(line); 
     } 
     return false; 
    } 


    /** 
    * Returns all lines in a path. The lines are constructed such that the starting point is found 
    * on the left (or same x-coordinate) of the ending point. 
    * <p/> 
    * @param path the path 
    * @return the lines, sorted in ascending order of the x-coordinate of the starting point and 
    * ending point, respectively 
    */ 
    private static SortedSet<Line2D> getLines(PathIterator path) 
    { 
     double[] coords = new double[6]; 
     SortedSet<Line2D> result = new TreeSet<Line2D>(new Comparator<Line2D>() 
     { 
      @Override 
      public int compare(Line2D o1, Line2D o2) 
      { 
       int result = Double.compare(o1.getX1(), o2.getX1()); 
       if (result == 0) 
       { 
        // Ensure we are consistent with equals() 
        return Double.compare(o1.getX2(), o2.getX2()); 
       } 
       return result; 
      } 
     }); 
     if (path.isDone()) 
      return result; 
     int type = path.currentSegment(coords); 
     assert (type == PathIterator.SEG_MOVETO): type; 
     Point.Double startPoint = new Point.Double(coords[0], coords[1]); 
     Point.Double openPoint = startPoint; 
     path.next(); 

     while (!path.isDone()) 
     { 
      type = path.currentSegment(coords); 
      assert (type != PathIterator.SEG_CUBICTO && type != PathIterator.SEG_QUADTO): type; 
      switch (type) 
      { 
       case PathIterator.SEG_MOVETO: 
       { 
        openPoint = startPoint; 
        break; 
       } 
       case PathIterator.SEG_CLOSE: 
       { 
        coords[0] = openPoint.x; 
        coords[1] = openPoint.y; 
        break; 
       } 
      } 
      Point.Double endPoint = new Point.Double(coords[0], coords[1]); 
      if (Double.compare(startPoint.getX(), endPoint.getX()) < 0) 
       result.add(new Line2D.Double(startPoint, endPoint)); 
      else 
       result.add(new Line2D.Double(endPoint, startPoint)); 
      path.next(); 
      startPoint = endPoint; 
     } 
     return result; 
    } 
} 
関連する問題