私はプログラムを持っています。なぜ私は関数hmmlearn.hmm.GaussianHMM.fit()を実行するたびに異なる値を得る
n = 6
data=pd.read_csv('11.csv',index_col='datetime')
volume = data['TotalVolumeTraded']
close = data['ClosingPx']
logDel = np.log(np.array(data['HighPx'])) - np.log(np.array(data['LowPx']))
logRet_1 = np.array(np.diff(np.log(close)))
logRet_5 = np.log(np.array(close[5:])) - np.log(np.array(close[:-5]))
logVol_5 = np.log(np.array(volume[5:])) - np.log(np.array(volume[:-5]))
logDel = logDel[5:]
logRet_1 = logRet_1[4:]
close = close[5:]
Date = pd.to_datetime(data.index[5:])
A = np.column_stack([logDel,logRet_5,logVol_5])
model = GaussianHMM(n_components= n, covariance_type="full", n_iter=2000).fit([A])
hidden_states = model.predict(A)
Iコード初めて実行Iコードをもう一度実行し、
に従うように、「hidden_states」の値は、「hidden_states」の値としてです続き、
なぜ「hidden_states」の値が異なるのですか?