私は200人のデータフレームを持っており、dplyrを使って無作為に半分を選択し、「sex」という変数を作成し、100として性別を男性に割り当てたいと思います。残りの100人については、セックスを女性に割り当てたいと思います。データセットの再現可能な例を以下に示します。dplyrを使って無作為にサンプリングして変数を割り当てる
df <- dput(input)
structure(list(id = 1:200, age = c(6L, 4L, 4L, 6L, 1L, 5L, 3L,
1L, 0L, 0L, 0L, 5L, 5L, 5L, 3L, 4L, 4L, 2L, 2L, 3L, 3L, 4L, 6L,
4L, 4L, 0L, 4L, 6L, 1L, 5L, 2L, 6L, 2L, 2L, 0L, 3L, 1L, 6L, 0L,
2L, 5L, 3L, 5L, 3L, 1L, 6L, 6L, 0L, 4L, 5L, 0L, 5L, 3L, 6L, 1L,
2L, 1L, 1L, 4L, 2L, 1L, 2L, 0L, 4L, 3L, 3L, 6L, 2L, 1L, 2L, 5L,
0L, 5L, 2L, 5L, 3L, 3L, 3L, 2L, 5L, 1L, 0L, 0L, 1L, 6L, 3L, 1L,
5L, 6L, 4L, 4L, 4L, 0L, 6L, 6L, 3L, 4L, 6L, 5L, 2L, 5L, 6L, 2L,
2L, 4L, 0L, 4L, 6L, 5L, 6L, 0L, 6L, 2L, 1L, 5L, 5L, 5L, 5L, 3L,
1L, 6L, 3L, 1L, 1L, 3L, 4L, 2L, 4L, 2L, 0L, 5L, 0L, 3L, 1L, 1L,
2L, 0L, 5L, 2L, 3L, 6L, 5L, 2L, 6L, 0L, 0L, 6L, 6L, 1L, 4L, 2L,
0L, 4L, 1L, 3L, 6L, 3L, 4L, 3L, 0L, 1L, 6L, 6L, 5L, 4L, 1L, 1L,
6L, 0L, 1L, 2L, 1L, 1L, 2L, 0L, 4L, 1L, 2L, 2L, 2L, 1L, 6L, 5L,
3L, 2L, 3L, 5L, 2L, 3L, 4L, 5L, 0L, 6L, 5L, 1L, 4L, 5L, 3L, 5L,
5L), x = c(21, 9, 31, 55, 5, 63, 63, 3, 13, 21, 53, 77, 5, 67,
63, 31, 17, 5, 21, 45, 79, 3, 7, 43, 27, 1, 63, 11, 37, 33, 27,
53, 71, 73, 97, 87, 77, 17, 85, 91, 49, 87, 89, 61, 65, 17, 71,
33, 53, 85, 49, 41, 75, 85, 79, 75, 23, 63, 89, 31, 29, 47, 75,
63, 65, 27, 27, 71, 89, 29, 25, 49, 91, 91, 39, 65, 45, 99, 53,
21, 29, 81, 35, 7, 27, 81, 93, 41, 79, 83, 31, 51, 33, 75, 15,
69, 7, 29, 7, 35, 87, 93, 57, 13, 91, 87, 95, 77, 7, 37, 81,
99, 83, 69, 85, 5, 77, 69, 55, 7, 39, 5, 41, 1, 63, 25, 13, 39,
97, 73, 25, 49, 35, 95, 59, 75, 23, 35, 67, 73, 91, 83, 79, 9,
27, 89, 79, 53, 89, 69, 95, 57, 11, 45, 63, 5, 25, 61, 3, 89,
1, 61, 85, 75, 67, 73, 63, 77, 43, 31, 69, 39, 47, 59, 75, 45,
57, 73, 5, 85, 57, 13, 91, 69, 79, 89, 13, 33, 15, 23, 89, 85,
39, 87, 7, 97, 57, 5, 61, 85), y = c(41, 57, 29, 59, 83, 77,
35, 73, 99, 69, 85, 23, 85, 11, 63, 97, 73, 47, 57, 73, 77, 1,
91, 17, 71, 57, 11, 3, 81, 31, 5, 41, 69, 93, 3, 11, 45, 97,
81, 87, 43, 9, 53, 61, 11, 63, 59, 33, 49, 89, 87, 79, 47, 59,
41, 25, 47, 13, 69, 11, 93, 83, 91, 85, 13, 95, 13, 37, 99, 35,
11, 63, 19, 99, 71, 55, 5, 21, 43, 59, 49, 15, 99, 15, 75, 77,
53, 51, 91, 45, 83, 21, 29, 35, 3, 27, 97, 95, 29, 53, 55, 41,
45, 31, 75, 37, 15, 47, 3, 1, 99, 55, 81, 37, 1, 41, 51, 45,
27, 83, 9, 69, 13, 81, 91, 55, 51, 31, 17, 97, 1, 47, 35, 7,
53, 59, 5, 51, 7, 5, 93, 63, 95, 51, 33, 43, 75, 67, 59, 89,
49, 83, 21, 49, 5, 5, 19, 45, 29, 41, 25, 3, 9, 1, 73, 53, 43,
99, 69, 41, 21, 3, 3, 13, 39, 21, 55, 75, 91, 31, 79, 17, 43,
91, 73, 11, 75, 15, 49, 77, 77, 23, 83, 47, 51, 53, 57, 99, 35,
15)), row.names = c(NA, -200L), class = "data.frame", .Names = c("id",
"age", "x", "y"))
私はdplyrを初めて使用しています。この操作を実行する方法がわかりません。私はそれがこのようなものになると思っています:
new_df <- df %>%
sample_frac(0.5) %>% # use sample_frac or sample_n to select 100 individuals
mutate(sex = "male")
しかし、明らかに新しいデータフレームが得られます。元のデータフレームから100人の男性を選択し、ifelseステートメントのようなものを使って残りを女性に割り当てる方法はありますか?
てみましたか? – Wen