2017-09-20 14 views
-1

私はコーセラのPython 3にSyntaxError:無効な構文(機械学習)

# GRADED FUNCTION: backward_propagation 

デフbackward_propagation(パラメータ、キャッシュ、X、Y)から1つの隠れ層を有する平面データの分類を記述しています: ""」 上記の手順を使用して、逆方向伝搬を実現

Arguments: 
parameters -- python dictionary containing our parameters 
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". 
X -- input data of shape (2, number of examples) 
Y -- "true" labels vector of shape (1, number of examples) 

Returns: 
grads -- python dictionary containing your gradients with respect to different parameters 
""" 
m = X.shape[1] 

# First, retrieve W1 and W2 from the dictionary "parameters". 
### START CODE HERE ### (≈ 2 lines of code) 
W1 = parameters["W1"] 
W2 = parameters["W2"] 
### END CODE HERE ### 

# Retrieve also A1 and A2 from dictionary "cache". 
### START CODE HERE ### (≈ 2 lines of code) 
A1 = cache["A1"] 
A2 = cache["A1"] 
### END CODE HERE ### 

# Backward propagation: calculate dW1, db1, dW2, db2. 
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above) 
dZ2= A2-Y 
dW2 = (1/m)*np.dot(dZ2,A1.T) 
db2 = (1/m)*np.sum(dZ2, axis=1, keepdims=True) 
dZ1 = np.multiply(np.dot(W2.T, dZ2),1 - np.power(A1, 2) 
dW1 = (1/m) * np.dot(dZ1, X.T) 
db1 = (1/m)*np.sum(dZ1,axis1,keepdims=True) 
### END CODE HERE ### 

grads = {"dW1": dW1, 
     "db1": db1, 
     "dW2": dW2, 
     "db2": db2} 

return grads 

とき、私はこのコードを実行します。 ファイル ""、ライン36 DW1 =(1/M)* np.dot(DZ1、XT) を^ SyntaxError:無効な構文

+3

np.multiplyの上の行に閉じ括弧がありません。 'dZ1 = np.multiply(np.dot(W2.T、dZ2)、1 - np.power(A1、2)) 'にする必要があります。 – umutto

答えて

0

コメントのいずれかで説明したように、dZ1の閉じ括弧がありません。 と入力し、 "db1"に "axis1"を軸= 1として書き込みます。