-1
私はコーセラのPython 3にSyntaxError:無効な構文(機械学習)
# GRADED FUNCTION: backward_propagation
デフbackward_propagation(パラメータ、キャッシュ、X、Y)から1つの隠れ層を有する平面データの分類を記述しています: ""」 上記の手順を使用して、逆方向伝搬を実現
Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = X.shape[1]
# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters["W1"]
W2 = parameters["W2"]
### END CODE HERE ###
# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache["A1"]
A2 = cache["A1"]
### END CODE HERE ###
# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2= A2-Y
dW2 = (1/m)*np.dot(dZ2,A1.T)
db2 = (1/m)*np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2),1 - np.power(A1, 2)
dW1 = (1/m) * np.dot(dZ1, X.T)
db1 = (1/m)*np.sum(dZ1,axis1,keepdims=True)
### END CODE HERE ###
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
とき、私はこのコードを実行します。 ファイル ""、ライン36 DW1 =(1/M)* np.dot(DZ1、XT) を^ SyntaxError:無効な構文
np.multiplyの上の行に閉じ括弧がありません。 'dZ1 = np.multiply(np.dot(W2.T、dZ2)、1 - np.power(A1、2)) 'にする必要があります。 – umutto