2017-10-11 8 views
1

私はデータ科学の新人です。来週の視聴者に伝えるコードをダウンロードしました。predict_value1 = regr1.predict(9)この文の意味

しかし、この次のコードでは、次の関数の機能とその値の予測方法を理解できません。

データセットはそれぞれ7の値です。なぜ9つだけが中括弧に挿入されますか?

regr1 = linear_model.LinearRegression() 
    regr1.fit(x1, y1) 
    predicted_value1 = regr1.predict(9) 

thessssの行は何を行いますか?ここで

は完全なコードです:

import pandas as pd 
    def get_data(file_name): 
     data = pd.read_csv(file_name) 
     flash_x_parameter = [] 
     flash_y_parameter = [] 
     arrow_x_parameter = [] 
     arrow_y_parameter = [] 
     for x1,y1,x2,y2 in zip(data['flash_episode_number'], 
      data['flash_us_viewers'], 
      data['arrow_episode_number'],data['arrow_us_viewers']): 
        flash_x_parameter.append([float(x1)]) 
        flash_y_parameter.append(float(y1)) 
        arrow_x_parameter.append([float(x2)]) 
        arrow_y_parameter.append(float(y2)) 
    return flash_x_parameter, 
     flash_y_parameter,arrow_x_parameter,arrow_y_parameter 


    def more_viewers(x1,y1,x2,y2): 
     regr1 = linear_model.LinearRegression() 
     regr1.fit(x1, y1) 
     predicted_value1 = regr1.predict(9) 

     regr2 = linear_model.LinearRegression() 
     regr2.fit(x2, y2) 
     predicted_value2 = regr2.predict(9) 
     print predicted_value1,"are the flash viewers" 
     print predicted_value2,"are the arrow viewers" 
     if predicted_value1 > predicted_value2: 
      print "The Flash Tv Show will have more viewers for next week" 
    else: 
     print "Arrow Tv Show will have more viewers for next week" 
    x1,y1,x2,y2 = get_data('C:\\Users\\SHIVAPRASAD\\Desktop\\test.csv') 

    more_viewers(x1,y1,x2,y2) 
+0

質問は完全に不明です。適切な文章を使用してください。説明は、このコードをダウンロードした時点でサイト上になければなりません。 – Rockbar

答えて

0

いいえ、あなたのデータは7値の設定されていない、それは9行があります。

+----------------+-------------------+----------------+------------------+ 
| FLASH_EPISODE | FLASH_US_VIEWERS | ARROW_EPISODE | ARROW_US_VIEWERS | 
+----------------+-------------------+----------------+------------------+ 
|    1 |    4.83 |    1 |    2.84 | 
|    2 |    4.27 |    2 |    2.32 | 
|    3 |    3.59 |    3 |    2.55 | 
|    4 |    3.53 |    4 |    2.49 | 
|    5 |    3.46 |    5 |    2.73 | 
|    6 |    3.73 |    6 |    2.6 | 
|    7 |    3.47 |    7 |    2.64 | 
|    8 |    4.34 |    8 |    3.92 | 
|    9 |    4.66 |    9 |    3.06 | 
+----------------+-------------------+----------------+------------------+ 

(あなたのコードはDataconomy Linear Regression Implementation in Pythonからであると。)

コマンド内の値9

predicted_value1 = regr1.predict(9) 

はOKです。