0
私はオープンアクセスギブスコードの1つを使用して画像分類用の畳み込みニューラルネットワークを作成しようとしています。私は2種類の画像を持っています。私は、コードの一部の実行を開始する場合でも、私はこのエラーの起源はどこか、おそらくですが、私の直感は、と言われます(エラーが発生したコードの一部にこのエラーTensorflow Deprecation警告
/Users/user/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/__main__.py:46: DeprecationWarning: elementwise == comparison failed; this will raise an error in the future.
これをされて得続けますそれは画像のラベルにありますが、私はそれを修正する方法がわかりません、私は複数回ラベルを貼り付けてみましたが、何もこれを修正するために働いていませんでした)。
def print_test_accuracy(show_example_errors=False,
show_confusion_matrix=False):
# Number of images in the test-set.
num_test = len(test_images)
# Allocate an array for the predicted classes which
# will be calculated in batches and filled into this array.
cls_pred = np.zeros(shape=num_test, dtype=np.int)
# Now calculate the predicted classes for the batches.
# We will just iterate through all the batches.
# There might be a more clever and Pythonic way of doing this.
# The starting index for the next batch is denoted i.
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i + test_batch_size, num_test)
# Get the images from the test-set between index i and j.
images = test_images[i:j, :]
# Get the associated labels.
labels = test_labels[i:j, :]
# Create a feed-dict with these images and labels.
feed_dict = {x: images,
y_true: labels}
# Calculate the predicted class using TensorFlow.
cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch.
i = j
# Convenience variable for the true class-numbers of the test-set.
cls_true = test_class_labels
# Create a boolean array whether each image is correctly classified.
correct = (cls_true == cls_pred)
# Calculate the number of correctly classified images.
# When summing a boolean array, False means 0 and True means 1.
correct_sum = sum(correct)
# Classification accuracy is the number of correctly classified
# images divided by the total number of images in the test-set.
acc = float(correct_sum)/num_test
# Print the accuracy.
msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
print(msg.format(acc, correct_sum, num_test))
# Plot some examples of mis-classifications, if desired.
if show_example_errors:
print("Example errors:")
plot_example_errors(cls_pred=cls_pred, correct=correct)
# Plot the confusion matrix, if desired.
if show_confusion_matrix:
print("Confusion Matrix:")
plot_confusion_matrix(cls_pred=cls_pred)
、この警告の唯一の可能性の高いソースを'correct =(cls_true == cls_pred)'です。両方の配列が同じサイズを持っているかどうか確認してください –
私の記事https://martin-thoma.com/image-classification/に興味があるかもしれません。 –