テンソルボードは、tf.train.Saver()
を使用してテンソルフロー変数の埋め込みビジュアライゼーションを提供します。 (this answerからの)実施例を以下に示しテンソルボード埋め込みにテンソルは表示されませんか?
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector
LOG_DIR = '/tmp/emb_logs/'
metadata = os.path.join(LOG_DIR, 'metadata.tsv')
mnist = input_data.read_data_sets('MNIST_data')
#Variables
images = tf.Variable(mnist.test.images, name='images')
weights=tf.Variable(tf.random_normal([3,3,1,16]))
biases=tf.Variable(tf.zeros([16]))
#Tensor from the variables
x = tf.reshape(images, shape=[-1, 28, 28, 1])
conv_layer=tf.nn.conv2d(x, weights, [1,1,1,1], padding="SAME")
conv_layer=tf.add(conv_layer, biases)
y = tf.reshape(conv_layer, shape=[-1, 28*28*16])
with open(metadata, 'wb') as metadata_file:
for row in mnist.test.labels:
metadata_file.write('%d
' % row)
with tf.Session() as sess:
saver = tf.train.Saver([images])
sess.run(images.initializer)
saver.save(sess, os.path.join(LOG_DIR, 'images.ckpt'))
config = projector.ProjectorConfig()
# One can add multiple embeddings.
embedding = config.embeddings.add()
embedding.tensor_name = images.name
# Link this tensor to its metadata file (e.g. labels).
embedding.metadata_path = metadata
# Saves a config file that TensorBoard will read during startup.
projector.visualize_embeddings(tf.summary.FileWriter(LOG_DIR), config)
どのように私は上記のコードではy
のように、tensorflowテンソルから埋め込みを可視化することができますか?
単に
saver = tf.train.Saver([y])
で
saver = tf.train.Saver([images])
を交換すると、次のエラーのため、動作しません:
474 var = ops.convert_to_tensor(var, as_ref=True)
475 if not BaseSaverBuilder._IsVariable(var):
476 raise TypeError("Variable to save is not a Variable: %s" % var)
477 name = var.op.name
478 if name in names_to_saveables:
TypeError: Variable to save is not a Variable: Tensor("Reshape_11:0", shape=(10000, 12544), dtype=float32)
は、視覚化を埋め込むtensorboard生成する代替の人を知っていますtf.tensorの?