私は割り当てに取り組んできましたが、今はバグのあるデストラクタに悩まされています。私は、すべての通常のメンバ関数といくつかの特別な演算子を持つ汎用バイナリツリーを作成する必要があります。また、制限があります:すべてが反復的に動作しなければならないので、今度は厄介な再帰的なハックはありません。一般的なバイナリツリーノードのデストラクタの問題
node->getData(); //should fail miserably
はとても削除はありませんがあります。
BinTreeNode<int> * node = new BinTreeNode<int>();
delete node;
が、私はまだそのデータにアクセスすることができます:私はこのようなノードを削除した場合ので
BinTreeNodeクラスのデストラクタを持つ非常に間違って何かが明らかにありどのように私はデストラクタを修正する必要があります使用可能なアイデアはありません。 アルゴリズムはほぼ正しいと思われるので、ポインタの使い方に何か問題があると思われますが、この時点で私は自分のコードを理解できないほど混乱しています。
私はここまでコード:
BinTree.h
#ifndef BINTREE_H_
#define BINTREE_H_
#ifndef NULL
#define NULL 0
#endif
#include "BinTreeNode.h"
template <class T>
class BinTree
{
private:
BinTreeNode<T> * root;
public:
//constructors and destructor
BinTree():
root(NULL){}
BinTree(T data):
root(new BinTreeNode<T>(data)){}
~BinTree();
//search
BinTreeNode<T> * search(T data);
//insert
bool insert(T data);
//remove
bool remove(T data);
};
template <class T>
BinTree<T>::~BinTree()
{
delete root;
}
template <class T>
BinTreeNode<T> * BinTree<T>::search(T data)
{
BinTreeNode<T> * node = new BinTreeNode<T>(data);
BinTreeNode<T> * current = root;
while (current != NULL)
{
if (*current == *node)
{
delete node;
return root;
}
else if (*node < *current)
{
current = current->getLeft();
}
else
{
current = current->getRight();
}
}
delete node;
return NULL;
}
template <class T>
bool BinTree<T>::insert(T data)
{
BinTreeNode<T> * node = new BinTreeNode<T>(data);
BinTreeNode<T> * current = root;
while (current != NULL)
{
if (*current == *node)
{
delete node;
return false;
}
else if (*node < *current)
{
if (current->getLeft() == NULL)
{
current->setLeft(node);
return true;
}
else
{
current = current->getLeft();
}
}
else
{
if (current->getRight() == NULL)
{
current->setRight(node);
return true;
}
else
{
current = current->getRight();
}
}
}
return false;
}
#endif
BinTreeNode.h
#ifndef BINTREENODE_H_
#define BINTREENODE_H_
#ifndef NULL
#define NULL 0
#endif
template <class T>
class BinTreeNode
{
private:
T data;
BinTreeNode<T> *left, *right, *parent;
public:
//constructors and destructor
BinTreeNode():
data(NULL), left(NULL), right(NULL), parent(NULL){}
BinTreeNode(T data):
data(data), left(NULL), right(NULL), parent(NULL){}
~BinTreeNode();
//set and get data member
T getData() const;
void setData(T data);
//set and get left and right branches
BinTreeNode<T> * getLeft() const;
BinTreeNode<T> * getRight() const;
void setLeft(BinTreeNode<T> * node);
void setRight(BinTreeNode<T> * node);
//set and get parent
BinTreeNode<T> * getParent() const;
void setParent(BinTreeNode<T> * node);
//comparison operators
bool operator<(const BinTreeNode<T>& node) const;
bool operator>(const BinTreeNode<T>& node) const;
bool operator==(const BinTreeNode<T>& node) const;
};
template <class T>
BinTreeNode<T>::~BinTreeNode()
{
BinTreeNode<T> * current = this;
BinTreeNode<T> * parent = NULL;
while (current != NULL)
{
parent = current->getParent();
if (current->getLeft() == NULL)
current = current->getLeft();
else if (current->getRight() == NULL)
current = current->getRight();
else
{
if (parent->getRight() == current)
parent->setRight(NULL);
else
parent->setLeft(NULL);
current = NULL; // this line (among others) is very suspicious
}
current = parent;
}
}
template <class T>
T BinTreeNode<T>::getData() const
{
return data;
}
template <class T>
void BinTreeNode<T>::setData(T data)
{
this->data = data;
}
template <class T>
BinTreeNode<T> * BinTreeNode<T>::getLeft() const
{
return left;
}
template <class T>
BinTreeNode<T> * BinTreeNode<T>::getRight() const
{
return right;
}
template <class T>
void BinTreeNode<T>::setLeft(BinTreeNode<T> * node)
{
node->setParent(this);
left = node;
}
template <class T>
void BinTreeNode<T>::setRight(BinTreeNode<T> * node)
{
node->setParent(this);
right = node;
}
template <class T>
BinTreeNode<T> * BinTreeNode<T>::getParent() const
{
return parent;
}
template <class T>
void BinTreeNode<T>::setParent(BinTreeNode<T> * node)
{
parent = node;
}
template <class T>
bool BinTreeNode<T>::operator<(const BinTreeNode<T>& node) const
{
return this->data < node.data;
}
template <class T>
bool BinTreeNode<T>::operator>(const BinTreeNode<T>& node) const
{
return this->data > node.data;
}
template <class T>
bool BinTreeNode<T>::operator==(const BinTreeNode<T>& node) const
{
return this->data == node.data;
}
#endif /* BINTREENODE_H_ */
これは、割り当てられていないメモリに格納されていたデータにアクセスする可能性が高くなりますが、技術的に定義されていない動作なので、何かを行うことができます。 –
@Charles Keepax私は自由なアドレスにアクセスすることに関連する未定義の動作を述べる行を追加しました。 – mfontanini
この再帰的メソッドは、実際には非常にきちんとしていますが、以前に述べたように、私の関数のいずれかで再帰を使用することはできません。これはIMHOという非常に愚かな制限です(再帰はバイナリツリーのための手段という意味です)が、私は先生の希望に従わなければなりません。 – Athelionas