私は可変数の列のpandasデータフレームを持っています。私は数値的にデータフレームの各列を統合して、行0から行 'n'までの積分を評価できるようにしたいと思います。私は1D配列で動作する関数を持っていますが、pandasデータフレームでこれを行うより良い方法がありますので、列やセルを反復処理する必要はありません。私はapplymapを使う方法を考えていましたが、それを動作させる方法がわかりません。python pandasデータフレームにおける明確な数値の統合
これは、1次元配列上で動作機能である:
def findB(x,y):
y_int = np.zeros(y.size)
y_int_min = np.zeros(y.size)
y_int_max = np.zeros(y.size)
end = y.size-1
y_int[0]=(y[1]+y[0])/2*(x[1]-x[0])
for i in range(1,end,1):
j=i+1
y_int[i] = (y[j]+y[i])/2*(x[j]-x[i]) + y_int[i-1]
return y_int
私は、すべてを一度にこのような何かをデータフレームの複数の列を算出し、何かに置き換えるしたいと思います:
B_df = y_df.applymap(integrator)
EDIT:
開始データフレームdB_df:
Sample1 1 dB Sample1 2 dB Sample1 3 dB Sample1 4 dB Sample1 5 dB Sample1 6 dB
0 2.472389 6.524537 0.306852 -6.209527 -6.531123 -4.901795
1 6.982619 -0.534953 -7.537024 8.301643 7.744730 7.962163
2 -8.038405 -8.888681 6.856490 -0.052084 0.018511 -4.117407
3 0.040788 5.622489 3.522841 -8.170495 -7.707704 -6.313693
4 8.512173 1.896649 -8.831261 6.889746 6.960343 8.236696
5 -6.234313 -9.908385 4.934738 1.595130 3.116842 -2.078000
6 -1.998620 3.818398 5.444592 -7.503763 -8.727408 -8.117782
7 7.884663 3.818398 -8.046873 6.223019 4.646397 6.667921
8 -5.332267 -9.163214 1.993285 2.144201 4.646397 0.000627
9 -2.783008 2.288842 5.836786 -8.013618 -7.825365 -8.470759
エンディングデータフレームB_df:上記の例で
Sample1 1 B Sample1 2 B Sample1 3 B Sample1 4 B Sample1 5 B Sample1 6 B
0 0.000038 0.000024 -0.000029 0.000008 0.000005 0.000012
1 0.000034 -0.000014 -0.000032 0.000041 0.000036 0.000028
2 0.000002 -0.000027 0.000010 0.000008 0.000005 -0.000014
3 0.000036 0.000003 -0.000011 0.000003 0.000002 -0.000006
4 0.000045 -0.000029 -0.000027 0.000037 0.000042 0.000018
5 0.000012 -0.000053 0.000015 0.000014 0.000020 -0.000023
6 0.000036 -0.000023 0.000004 0.000009 0.000004 -0.000028
7 0.000046 -0.000044 -0.000020 0.000042 0.000041 -0.000002
8 0.000013 -0.000071 0.000011 0.000019 0.000028 -0.000036
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
、すべての
(x[j]-x[i]) = 0.000008
入力したDataframeと期待される出力の例を挙げることができますか? – Allen
あなたはおそらく 'apply'を探していますが、これは本当に列のループより効率的ではありません。 –
'x'はどこから来ますか?それは 'シリーズ'、numpy 'ndarray'なのでしょうか? –