2017-06-20 5 views
2

は、だから私は(のpython 3)tensorflow(1.2)で、このエラーを取得しています:関数をテンソルまたは演算に変換できません。 Tensorflowエラー

WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`. 
Traceback (most recent call last): 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 267, in __init__ 
    fetch, allow_tensor=True, allow_operation=True)) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2584, in as_graph_element 
    return self._as_graph_element_locked(obj, allow_tensor, allow_operation) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2673, in _as_graph_element_locked 
    % (type(obj).__name__, types_str)) 
TypeError: Can not convert a function into a Tensor or Operation. 

During handling of the above exception, another exception occurred: 

Traceback (most recent call last): 
    File "/home/theshoutingparrot/Desktop/Programming/Python/MachineLearningPY/Tensorflow/NumberClassifier.py", line 54, in <module> 
    summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys}) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 789, in run 
    run_metadata_ptr) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 984, in _run 
    self._graph, fetches, feed_dict_string, feed_handles=feed_handles) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 410, in __init__ 
    self._fetch_mapper = _FetchMapper.for_fetch(fetches) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 238, in for_fetch 
    return _ElementFetchMapper(fetches, contraction_fn) 
    File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 271, in __init__ 
    % (fetch, type(fetch), str(e))) 
TypeError: Fetch argument <function merge_all at 0x7f7d0f3d8620> has invalid type <class 'function'>, must be a string or Tensor. (Can not convert a function into a Tensor or Operation.) 

そして、ここではコードです:

from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

import tensorflow as tf 


learning_rate = 0.01 
training_iteration = 30 
batch_size = 100 
display_step = 2 


x = tf.placeholder("float", [None, 784]) 
y = tf.placeholder("float", [None, 10]) 

W = tf.Variable(tf.zeros([784, 10])) 
b = tf.Variable(tf.zeros([10])) 

with tf.name_scope("Wx_b") as scope: 
    model = tf.nn.softmax(tf.matmul(x, W) + b) 

w_h = tf.summary.histogram("weights", W) 
b_h = tf.summary.histogram("biases", b) 


with tf.name_scope("cost_function") as scope: 
    cost_function = -tf.reduce_sum(y*tf.log(model)) 
    tf.summary.scalar("cost_function", cost_function) 

with tf.name_scope("train") as scope: 
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function) 

init = tf.global_variables_initializer() #tf.initialize_all_variables() 

merged_summary_op = tf.summary.merge_all 

#Launch the graph 

with tf.Session() as sess: 
    sess.run(init) 
    summary_writer = tf.summary.FileWriter('/home/theshoutingparrot/work/logs', graph_def=sess.graph_def) 

    for iteration in range(training_iteration): 
     avg_cost = 0. 
     total_batch = int(mnist.train.num_examples/batch_size) 

    for i in range(total_batch): 
     batch_xs, batch_ys = mnist.train.next_batch(batch_size) 

     sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) 

     avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch 

     summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys}) 
     summary_writer.add_summary(summary_str, iteration*total_batch + i) 

    if iteration % display_step == 0: 
     print("Iteration", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost)) 
    print("Tuning completed!") 

    predictions = tf.equal(tf.argmax(model,1), tf.argmax(y, 1)) 
    accuracy = tf.reduce_mean(tf.cast(predictions, "float")) 
    print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})) 

は私がtensorflowに新しいです。コードのビットは(このように異なっているなぜ私はそれがですので、彼(チュートリアル(のSirajラバル)中の人が)tensorflowの古いバージョンを使用している https://www.youtube.com/watch?v=2FmcHiLCwTU&list=PL2-dafEMk2A7EEME489DsI468AB0wQsMV

このビデオ(チュートリアル)から、このコードを「です」例):

w_h = tf.histogram_summary("weights", W) => w_h = tf.summary.histogram("weights", W) 

さらに詳しい情報:

私はもちろん、私は、Python 2.7用tensorflowをダウンロードした(のpythonと同じコード(2.7)を実行しようとしています)が、それは私に同じエラーを与えます。

どんな助力でも、Thxはいいですね。

+0

解決済みであることを明記する必要はありません。これは、回答を受け入れてから明らかです。 – coder

答えて

1

merged_summary_op = tf.summary.merge_all()

これは、実際にエラーメッセージがあなたを語っているものであるとmerged_summary_op = tf.summary.merge_allを置き換えますTypeError: Can not convert a function into a Tensor or Operation - >tf.summary.merge_allは機能ではなく、テンソルまたは操作である、あなたはtf.summary.merge_all()

に反対、 sess.run()でそれを実行することはできません
+0

Thxそんなに、おい! –

関連する問題