CUDAを初めて使用しています。私はCUDAで1Dと2Dのテクスチャをどのように行うかを考え出しました。しかし、私は1Dレイヤーテクスチャの使い方に苦労しています。テクスチャを使用する私のカーネルの出力はすべてゼロですが、間違いは間違いです。しかし、私は何が間違っているのか分かりません。私はこのテクスチャを正しく設定していることに深刻な疑念を抱いていますが、どこでもcudaエラーをチェックして問題を見つけることはできませんでした。誰かが1Dレイヤテクスチャを正しく設定して使用する方法を教えてもらえますか?ここに私のコードです。事前のおかげで:CUDAで1Dレイヤテクスチャを作成および使用する方法
// To Compile: nvcc backproj.cu -o backproj.out
// To Run: ./backproj.out
// Includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// Includes CUDA
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define pi acos(-1)
// 1D float textures
texture<float, cudaTextureType1DLayered, cudaReadModeElementType> texRef;
// 1D interpolation kernel: Should be very similar to what you get if you used 1D interpolation on MATLAB
__global__ void interp1Kernel(float* d_output, float* d_locations, int numlocations, int layer) {
unsigned int location_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (location_idx < numlocations) {
// Get the location you want to interpolate from the array
float loc2find = (float) d_locations[location_idx] + 0.5f;
// Read from texture and write to global memory
d_output[location_idx] = tex1DLayered(texRef, loc2find, layer);
}
}
// Host code
int main()
{
// Setup h_data and locations to interpolate from
const unsigned int len = 10;
const unsigned int numlayers = 3;
const unsigned int upsamp = 3;
const unsigned int loclen = 1 + (len - 1) * upsamp;
float idx_spacing = 1/(float)upsamp;
float h_data[len][numlayers], h_loc[loclen];
for (int i = 0; i < len; i++)
for (int j = 0; j < numlayers; j++)
h_data[i][j] = 1+cosf((float) pi*i/(j+1.0f));
for (int i = 0; i < loclen; i ++)
h_loc[i] = i*idx_spacing;
// Get the memory locations you want
float* d_loc;
cudaMalloc(&d_loc, loclen * sizeof(float));
cudaMemcpy(d_loc, h_loc, loclen*sizeof(float), cudaMemcpyHostToDevice);
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray* cuArray;
cudaMallocArray(&cuArray, &channelDesc, len, numlayers);
// Copy to device memory some data located at address h_data in host memory
cudaMemcpyToArray(cuArray, 0, 0, h_data, len * numlayers * sizeof(float), cudaMemcpyHostToDevice);
// Set texture reference parameters
texRef.addressMode[0] = cudaAddressModeBorder;
texRef.filterMode = cudaFilterModeLinear;
texRef.normalized = false;
// Bind the array to the texture reference
cudaBindTextureToArray(texRef, cuArray, channelDesc);
// Allocate result of transformation in device memory
float* d_output;
cudaMalloc(&d_output, loclen * sizeof(float));
// Invoke kernel
int thdsPerBlk = 256;
int blksPerGrid = (int) (loclen/thdsPerBlk) + 1;
printf("Threads Per Block: %d, Blocks Per Grid: %d\n", thdsPerBlk, blksPerGrid);
interp1Kernel <<<blksPerGrid, thdsPerBlk >>>(d_output, d_loc, loclen, 0);
// Print Results
printf("\n Original Indices \n");
for (int i = 0; i < len; i++) printf(" %d ", i);
printf("\n Original array \n");
for (int i = 0; i < len; i++) printf("%5.3f ", h_data[i][0]);
printf("\n Output Indices \n");
for (int i = 0; i < loclen; i++) printf("%5.3f ", h_loc[i]);
printf("\n Output Array \n");
cudaMemcpy(h_loc, d_output, loclen * sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < loclen; i++) printf("%5.3f ", h_loc[i]);
printf("\n");
// Free device memory
cudaFreeArray(cuArray);
cudaFree(d_output);
return 0;
}