対数を使用できます。 "fast log2 C++"をすばやくGoogleで検索すると、かなり長いアイデアのリストが作成されました。あなたの答えはlog2(x)/ 2であり、4の正確なべき乗の答えしか求められない場合は、結果が整数であることを確認する方法を見つける必要があります。
プログラミングしている場合x86プロセッサの場合、BitScanForward & BitScanReverseを使用して設定ビットを検索し、それを使用してlog2を計算することができます。次のコードはVisual Studioで動作します.GCCなどでは、インラインアセンブリを行う他の方法があります。
uint32_t exact_power_of_4_scan(uint32_t num)
{
unsigned long reverse;
unsigned long forward;
if (!_BitScanReverse(&reverse, num)) return 0;
_BitScanForward(&forward, num);
if (reverse != forward) return 0; // makes sure only a single bit is set
if (reverse & 0x1) return 0; // only want every other power of 2
return reverse/2;
}
ポータブルなソリューションが必要な場合は、テーブルルックアップが役立つかもしれませんが、より複雑です。
uint8_t not_single_bit[256] = {
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
uint8_t log2_table[256] = {
0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
uint32_t exact_power_of_2(uint32_t num)
{
auto a = not_single_bit[num & 0xff];
auto b = not_single_bit[(num >> 8) & 0xff];
auto c = not_single_bit[(num >> 16) & 0xff];
auto d = not_single_bit[(num >> 24) & 0xff];
if (a + b + c + d != 3) {
return 0;
}
if (!a) {
return log2_table[num & 0xff];
}
if (!b) {
return log2_table[(num >> 8) & 0xff] + 8;
}
if (!c) {
return log2_table[(num >> 16) & 0xff] + 16;
}
return log2_table[(num >> 24) & 0xff] + 24;
}
uint32_t exact_power_of_4(uint32_t num)
{
auto ret = exact_power_of_2(num);
if (ret & 0x1) return 0;
return ret/2;
}
どちらも線形アルゴリズムです。最初のものはおそらくnum
のほぼすべての値のためにループを打ち消すでしょうが、私はそれをテストしていません。 2番目のものは、おそらく大規模な場合にのみ有効ですnum
s。
これはちょっと野生ですが、分岐ループを取り除いて、おそらくnの値が高いほど効率的です。あなたの答えにコードを追加すれば、私はそれを受け入れます:int temp = BSR(n); value =!(n&((1 << temp)-1))*(temp >> 1); – user1043761
BSR =ビットスキャンリバース – user1043761