2017-06-21 15 views
0

システム情報とValueError:RNNCellを再利用しようとすると - tensorflowにループ

Linux Ubuntu 16.04 
tensorflow-gpu==1.1.0 

ながら、私は非常に複雑グラフでこのエラーを取得していますが、私は以下の最小限の(うまくいけば代表)の例でそれを再現することができます:

import tensorflow as tf 
import numpy as np 


class Controller(object): 
    def __init__(self, batch_size, input_size): 

     self.batch_size = batch_size 
     self.input_size = input_size 

     with tf.name_scope("controller"): 
      self.network_vars() 

      self.nn_output_size = None 
      with tf.variable_scope("shape_inference"): 
       self.nn_output_size = self.get_nn_output_size() 

    def network_vars(self): 
     self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(256) 
     self.state = self.lstm_cell.zero_state(self.batch_size, tf.float32) 

    def network_op(self, x, state): 
     x = tf.convert_to_tensor(x) 
     return self.lstm_cell(x, state) 

    def get_state(self): 
     return self.state 

    def update_state(self, new_state): 
     return tf.no_op() 

    def process_input(self, x, state=None): 
     nn_output, nn_state = self.network_op(x, state) 
     return nn_output, nn_state 

    def get_nn_output_size(self): 
     input_tensor = np.zeros([self.batch_size, self.input_size], dtype=np.float32) 
     output_vector, _ = self.network_op(input_tensor, self.get_state()) 
     shape = output_vector.get_shape().as_list() 

     if len(shape) > 2: 
      raise ValueError("Expected the neural network to output a 1D vector") 
     else: 
      return shape[1] 


class DNC(object): 
    def __init__(self, controller, batch_size, input_size): 
     self.controller = controller 
     self.batch_size = batch_size 
     self.input_size = input_size 
     self.build_graph() 

    def _step_op(self, x, controller_state=None): 
     _, nn_state = self.controller.process_input(x, controller_state) 
     return [nn_state[0], nn_state[1]] 

    def _loop_body(self, t, controller_state): 
     x = np.random.random_sample((self.batch_size, self.input_size)).astype(np.float32) 
     output_list = self._step_op(x, controller_state) 
     new_controller_state = tf.contrib.rnn.LSTMStateTuple(output_list[0], output_list[1]) 
     return t+1, new_controller_state 

    def build_graph(self): 
     controller_state = self.controller.get_state() 
     if not isinstance(controller_state, tf.contrib.rnn.LSTMStateTuple): 
      controller_state = tf.contrib.rnn.LSTMStateTuple(controller_state[0], controller_state[1]) 

     with tf.variable_scope("sequence_loop") as scope: 
      time = tf.constant(0, dtype=tf.int32) 

      final_results = tf.while_loop(
       cond=lambda time, *_: time < 50, 
       body=self._loop_body, 
       loop_vars=(time, controller_state), 
       parallel_iterations=32, 
       swap_memory=True 
      ) 

if __name__ == "__main__": 
    batch_size = 32 
    input_size = 10 
    rnn_controller = Controller(batch_size, input_size) 
    dnc = DNC(rnn_controller, batch_size, input_size) 

問題のトレースバックは、次のとおりです。

[email protected]:~$ python controller.py 
Traceback (most recent call last): 
    File "controller.py", line 84, in <module> 
    dnc = DNC(rnn_controller, batch_size, input_size) 
    File "controller.py", line 52, in __init__ 
    self.build_graph() 
    File "controller.py", line 77, in build_graph 
    swap_memory=True 
    File "/home/francescoferroni/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2623, in while_loop 
    result = context.BuildLoop(cond, body, loop_vars, shape_invariants) 
    File "/home/francescoferroni/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2456, in BuildLoop 
    pred, body, original_loop_vars, loop_vars, shape_invariants) 
    File "/home/francescoferroni/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2406, in _BuildLoop 
    body_result = body(*packed_vars_for_body) 
    File "controller.py", line 60, in _loop_body 
    output_list = self._step_op(x, controller_state) 
    File "controller.py", line 55, in _step_op 
    _, nn_state = self.controller.process_input(x, controller_state) 
    File "controller.py", line 33, in process_input 
    nn_output, nn_state = self.network_op(x, state) 
    File "controller.py", line 24, in network_op 
    return self.lstm_cell(x, state) 
    File "/home/francescoferroni/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py", line 235, in __call__ 
    with _checked_scope(self, scope or "basic_lstm_cell", reuse=self._reuse): 
    File "/home/francescoferroni/anaconda3/lib/python3.6/contextlib.py", line 82, in __enter__ 
    return next(self.gen) 
    File "/home/francescoferroni/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py", line 77, in _checked_scope 
    type(cell).__name__)) 
ValueError: Attempt to reuse RNNCell <tensorflow.contrib.rnn.python.ops.core_rnn_cell_impl.BasicLSTMCell object at 0x7fcaeca99518> with a different variable scope than its first use. First use of cell was with scope 'shape_inference/basic_lstm_cell', this attempt is with scope 'sequence_loop/basic_lstm_cell'. Please create a new instance of the cell if you would like it to use a different set of weights. If before you were using: MultiRNNCell([BasicLSTMCell(...)] * num_layers), change to: MultiRNNCell([BasicLSTMCell(...) for _ in range(num_layers)]). If before you were using the same cell instance as both the forward and reverse cell of a bidirectional RNN, simply create two instances (one for forward, one for reverse). In May 2017, we will start transitioning this cell's behavior to use existing stored weights, if any, when it is called with scope=None (which can lead to silent model degradation, so this error will remain until then.) 

私はtensorflow 1.0 rathe使用している場合1.1より大きい場合、問題は発生しません。私はまた、スコープを削除しようとした

ValueError: Variable shape_inference/basic_lstm_cell/weights does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope? 

:LSTMセルを定義するときに新しいtensorflowバージョンの

[email protected]:~$ source Repositories/tfr10/bin/activate 
(tfr10) [email protected]:~$ python controller.py 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally 
(tfr10) [email protected]:~$ 

が、私は再利用= trueフラグを追加しようとしました、が、その後私は別のエラーが出ますコントローラーの定義で

ValueError: Variable basic_lstm_cell/weights does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope? 

私はbuild_graph()のwhileループと関係があると思われます。私は他の答えに従ってみましたが、このテンソルフローのループケースでは動作しませんでした。どんな助けでも大歓迎です。

すべてのTensorflowのウィザードは答えを知っていますか?

フランチェスコ

答えて

1

私はtf.make_template、Pythonのテンプレートオブジェクトにバインドされた参照TensorFlow変数のアイデンティティを保持し、変数の作成ラッパーをお勧めします。

self.network_op = tf.make_template("network_op", self._network_op_impl) 
:あなたの例を変更する、私は(それは network_op前だとたいしたどこ限りと呼ばれていません)を加え Controller.__init__で、その後、 Controller._network_op_implController.network_opに改称しました
関連する問題