LSTM
を使用してRNN
を作成しようとしています。 LSTM
モデルを作ったあと、2つの回帰出力層と1つの回帰出力層があります。TensorflowでのLSTMの再利用再利用
私は自分のデータを訓練し、最終的な訓練の損失は約0.009
になります。 しかし、モデルをテストデータに適用すると、損失は約0.5
になります。
第1回訓練の損失は約0.5
です。 訓練された変数はテストモデルでは使用されないと思います。
トレーニングとテストモデルの唯一の違いは、バッチサイズです。 Trainning Batch = 100~200
,Test Batch Size = 1
。
メイン関数iはLSTM
インスタンスを作った。 LSTM
innitializerでは、機種が作られています。 LSTM上LSTMインスタンス以下のinitを使用
def __init__(self,config,train_model=None):
self.sess = sess = tf.Session()
self.num_steps = num_steps = config.num_steps
self.lstm_size = lstm_size = config.lstm_size
self.num_features = num_features = config.num_features
self.num_layers = num_layers = config.num_layers
self.num_hiddens = num_hiddens = config.num_hiddens
self.batch_size = batch_size = config.batch_size
self.train = train = config.train
self.epoch = config.epoch
self.learning_rate = learning_rate = config.learning_rate
with tf.variable_scope('model') as scope:
self.lstm_cell = lstm_cell = tf.nn.rnn_cell.LSTMCell(lstm_size,initializer = tf.contrib.layers.xavier_initializer(uniform=False))
self.cell = cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
with tf.name_scope('placeholders'):
self.x = tf.placeholder(tf.float32,[self.batch_size,num_steps,num_features],
name='input-x')
self.y = tf.placeholder(tf.float32, [self.batch_size,num_features],name='input-y')
self.init_state = cell.zero_state(self.batch_size,tf.float32)
with tf.variable_scope('model'):
self.W1 = tf.Variable(tf.truncated_normal([lstm_size*num_steps,num_hiddens],stddev=0.1),name='W1')
self.b1 = tf.Variable(tf.truncated_normal([num_hiddens],stddev=0.1),name='b1')
self.W2 = tf.Variable(tf.truncated_normal([num_hiddens,num_hiddens],stddev=0.1),name='W2')
self.b2 = tf.Variable(tf.truncated_normal([num_hiddens],stddev=0.1),name='b2')
self.W3 = tf.Variable(tf.truncated_normal([num_hiddens,num_features],stddev=0.1),name='W3')
self.b3 = tf.Variable(tf.truncated_normal([num_features],stddev=0.1),name='b3')
self.output, self.loss = self.inference()
tf.initialize_all_variables().run(session=sess)
tf.initialize_variables([self.b2]).run(session=sess)
if train_model == None:
self.train_step = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss)
が作られています。
with tf.variable_scope("model",reuse=None):
train_model = LSTM(main_config)
with tf.variable_scope("model", reuse=True):
predict_model = LSTM(predict_config)
2つのLSTM
インスタンスを行った後、私はtrain_model
を訓練しました。 そして、私はpredict_model
にテストセットを入力しました。
なぜ変数が再利用されないのですか?