あなたはWekaでそれを行うことができます。
Distance Functionを実装し、setDistanceFunction(DistanceFunction distanceFunction)
メソッドを使用してHierarchical Clustererに渡す必要があります。
ウェカで使用可能な他のclusterersは以下のとおりです。くもの巣、EM、FarthestFirst、FilteredClusterer、MakeDensityBasedClusterer、RandomizableClusterer、RandomizableDensityBasedClusterer、RandomizableSingleClustererEnhancer、SimpleKMeans、SingleClustererEnhancer。
NormalizableDistanceクラスからの例の距離関数、:
/** Index in ranges for MIN. */
public static final int R_MIN = 0;
/** Index in ranges for MAX. */
public static final int R_MAX = 1;
/** Index in ranges for WIDTH. */
public static final int R_WIDTH = 2;
/** the instances used internally. */
protected Instances m_Data = null;
/** True if normalization is turned off (default false).*/
protected boolean m_DontNormalize = false;
/** The range of the attributes. */
protected double[][] m_Ranges;
/** The range of attributes to use for calculating the distance. */
protected Range m_AttributeIndices = new Range("first-last");
/** The boolean flags, whether an attribute will be used or not. */
protected boolean[] m_ActiveIndices;
/** Whether all the necessary preparations have been done. */
protected boolean m_Validated;
public double distance(Instance first, Instance second, double cutOffValue, PerformanceStats stats) {
double distance = 0;
int firstI, secondI;
int firstNumValues = first.numValues();
int secondNumValues = second.numValues();
int numAttributes = m_Data.numAttributes();
int classIndex = m_Data.classIndex();
validate();
for (int p1 = 0, p2 = 0; p1 < firstNumValues || p2 < secondNumValues;) {
if (p1 >= firstNumValues)
firstI = numAttributes;
else
firstI = first.index(p1);
if (p2 >= secondNumValues)
secondI = numAttributes;
else
secondI = second.index(p2);
if (firstI == classIndex) {
p1++;
continue;
}
if ((firstI < numAttributes) && !m_ActiveIndices[firstI]) {
p1++;
continue;
}
if (secondI == classIndex) {
p2++;
continue;
}
if ((secondI < numAttributes) && !m_ActiveIndices[secondI]) {
p2++;
continue;
}
double diff;
if (firstI == secondI) {
diff = difference(firstI,
first.valueSparse(p1),
second.valueSparse(p2));
p1++;
p2++;
}
else if (firstI > secondI) {
diff = difference(secondI,
0, second.valueSparse(p2));
p2++;
}
else {
diff = difference(firstI,
first.valueSparse(p1), 0);
p1++;
}
if (stats != null)
stats.incrCoordCount();
distance = updateDistance(distance, diff);
if (distance > cutOffValue)
return Double.POSITIVE_INFINITY;
}
return distance;
}
あなたは別途(ウェカの属性と呼ばれます)は、さまざまな次元を扱うことができることを示します。したがって、各ディメンション/属性に対して異なる距離を定義できます。
いくつかのインスタンスをクラスタリングすることを避けるためのビジネスルールについて。私はビジネスルールが満たされていないときにDouble.positiveInfinity
を返す距離関数を作成できると思います。
私はJAVAを使用したい、それが:-) –