// init camera, scene, renderer
var scene, camera, renderer;
scene = new THREE.Scene();
var fov = 75,
\t \t aspect = window.innerWidth/window.innerHeight;
camera = new THREE.PerspectiveCamera(fov, aspect, 0.1, 1000);
camera.position.z = 100;
camera.lookAt(scene.position);
renderer = new THREE.WebGLRenderer();
renderer.setClearColor(0xc4c4c4);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
var clock = new THREE.Clock();
var tuniform = {
\t iGlobalTime: {
\t \t type: 'f',
\t \t value: 0.1
\t },
\t iResolution: {
\t \t type: 'v2',
\t \t value: new THREE.Vector2()
\t },
\t iMouse: {
\t \t type: 'v4',
\t \t value: new THREE.Vector2()
\t }
};
// Mouse position in - 1 to 1
renderer.domElement.addEventListener('mousedown', function(e) {
\t var canvas = renderer.domElement;
\t var rect = canvas.getBoundingClientRect();
\t tuniform.iMouse.value.x = (e.clientX - rect.left)/window.innerWidth * 2 - 1;
\t tuniform.iMouse.value.y = (e.clientY - rect.top)/window.innerHeight * -2 + 1;
});
renderer.domElement.addEventListener('mouseup', function(e) {
\t var canvas = renderer.domElement;
\t var rect = canvas.getBoundingClientRect();
\t tuniform.iMouse.value.z = (e.clientX - rect.left)/window.innerWidth * 2 - 1;
\t tuniform.iMouse.value.w = (e.clientY - rect.top)/window.innerHeight * -2 + 1;
});
// resize canvas function
window.addEventListener('resize',function() {
\t camera.aspect = window.innerWidth/window.innerHeight;
\t camera.updateProjectionMatrix();
\t renderer.setSize(window.innerWidth, window.innerHeight);
});
tuniform.iResolution.value.x = window.innerWidth;
tuniform.iResolution.value.y = window.innerHeight;
// Create Plane
var material = new THREE.ShaderMaterial({
\t uniforms: tuniform,
\t vertexShader: document.getElementById('vertex-shader').textContent,
\t fragmentShader: document.getElementById('fragment-shader').textContent
});
var mesh = new THREE.Mesh(
\t new THREE.PlaneBufferGeometry(window.innerWidth, window.innerHeight, 40), material
);
scene.add(mesh);
// draw animation
function render(time) {
\t tuniform.iGlobalTime.value += clock.getDelta();
\t requestAnimationFrame(render);
\t renderer.render(scene, camera);
}
render();
body {
\t overflow: hidden;
\t margin: 0;
\t height: 100%;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r70/three.min.js"></script>
<!-- THIS is OPENGL Shading language scripts -->
<script id="vertex-shader" type="no-js">
\t \t void main() \t {
\t \t \t gl_Position = vec4(position, 1.0);
\t \t }
</script>
<script id="fragment-shader" type="no-js">
\t uniform float iGlobalTime;
\t uniform vec2 iResolution;
\t uniform vec4 iMouse;
\t
const int NUM_STEPS = 8;
const float PI \t \t = 3.1415;
const float EPSILON \t = 1e-3;
float EPSILON_NRM \t = 0.1/iResolution.x;
// sea
const int ITER_GEOMETRY = 3;
const int ITER_FRAGMENT = 5;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 4.0;
const float SEA_SPEED = 0.8;
const float SEA_FREQ = 0.16;
//coloration sea
const vec3 SEA_BASE = vec3(0.1,0.19,0.22);
const vec3 SEA_WATER_COLOR = vec3(0.8,0.9,0.6);
float SEA_TIME = iGlobalTime * SEA_SPEED;
mat2 octave_m = mat2(1.6,1.2,-1.2,1.6);
// math
mat3 fromEuler(vec3 ang) {
\t vec2 a1 = vec2(sin(ang.x),cos(ang.x));
vec2 a2 = vec2(sin(ang.y),cos(ang.y));
vec2 a3 = vec2(sin(ang.z),cos(ang.z));
mat3 m;
m[0] = vec3(a1.y*a3.y+a1.x*a2.x*a3.x,a1.y*a2.x*a3.x+a3.y*a1.x,-a2.y*a3.x);
\t m[1] = vec3(-a2.y*a1.x,a1.y*a2.y,a2.x);
\t m[2] = vec3(a3.y*a1.x*a2.x+a1.y*a3.x,a1.x*a3.x-a1.y*a3.y*a2.x,a2.y*a3.y);
\t return m;
}
float hash(vec2 p) {
\t float h = dot(p,vec2(127.1,311.7)); \t
return fract(sin(h)*43758.5453123);
}
float noise(in vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p); \t
\t vec2 u = f*f*(3.0-2.0*f);
return -1.0+2.0*mix(mix(hash(i + vec2(0.0,0.0)),
hash(i + vec2(1.0,0.0)), u.x),
mix(hash(i + vec2(0.0,1.0)),
hash(i + vec2(1.0,1.0)), u.x), u.y);
}
// lighting
float diffuse(vec3 n,vec3 l,float p) {
return pow(dot(n,l) * 0.4 + 0.6,p);
}
float specular(vec3 n,vec3 l,vec3 e,float s) {
float nrm = (s + 8.0)/(3.1415 * 8.0);
return pow(max(dot(reflect(e,n),l),0.0),s) * nrm;
}
// sky
vec3 getSkyColor(vec3 e) {
e.y = max(e.y,0.0);
vec3 ret;
ret.x = pow(1.0-e.y,2.0);
ret.y = 1.0-e.y;
ret.z = 0.6+(1.0-e.y)*0.4;
return ret;
}
// sea
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0-abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv,swv,wv);
return pow(1.0-pow(wv.x * wv.y,0.65),choppy);
}
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
float d, h = 0.0;
for(int i = 0; i < ITER_GEOMETRY; i++) {
\t d = sea_octave((uv+SEA_TIME)*freq,choppy);
\t d += sea_octave((uv-SEA_TIME)*freq,choppy);
h += d * amp;
\t uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
float d, h = 0.0;
for(int i = 0; i < ITER_FRAGMENT; i++) {
\t d = sea_octave((uv+SEA_TIME)*freq,choppy);
\t d += sea_octave((uv-SEA_TIME)*freq,choppy);
h += d * amp;
\t uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
vec3 getSeaColor(vec3 p, vec3 n, vec3 l, vec3 eye, vec3 dist) {
float fresnel = 1.0 - max(dot(n,-eye),0.0);
fresnel = pow(fresnel,3.0) * 0.65;
vec3 reflected = getSkyColor(reflect(eye,n));
vec3 refracted = SEA_BASE + diffuse(n,l,80.0) * SEA_WATER_COLOR * 0.12;
vec3 color = mix(refracted,reflected,fresnel);
float atten = max(1.0 - dot(dist,dist) * 0.001, 0.0);
color += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
color += vec3(specular(n,l,eye,60.0));
return color;
}
// tracing
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x+eps,p.y,p.z)) - n.y;
n.z = map_detailed(vec3(p.x,p.y,p.z+eps)) - n.y;
n.y = eps;
return normalize(n);
}
float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if(hx > 0.0) return tx;
float hm = map(ori + dir * tm);
float tmid = 0.0;
for(int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm,tx, hm/(hm-hx));
p = ori + dir * tmid;
\t float hmid = map(p);
\t \t if(hmid < 0.0) {
\t tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
void main() {
\t vec2 uv = gl_FragCoord.xy/iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x/iResolution.y;
float time = iGlobalTime * 0.3 + iMouse.x*0.01;
// ray
vec3 ang = vec3(sin(time*3.0)*0.1,sin(time)*0.2+0.3,time);
vec3 ori = vec3(0.0,3.5,time*5.0);
vec3 dir = normalize(vec3(uv.xy,-2.0)); dir.z += length(uv) * 0.15;
dir = normalize(dir) * fromEuler(ang);
// tracing
vec3 p;
heightMapTracing(ori,dir,p);
vec3 dist = p - ori;
vec3 n = getNormal(p, dot(dist,dist) * EPSILON_NRM);
vec3 light = normalize(vec3(0.0,1.0,0.8));
// color
vec3 color = mix(
getSkyColor(dir),
getSeaColor(p,n,light,dir,dist),
\t pow(smoothstep(0.0,-0.05,dir.y),0.3));
// post
\t gl_FragColor = vec4(pow(color,vec3(0.75)), 1.0);
\t }
</script>
こんにちは "サリュー"、あなたは高さセグメント、PlaneBufferGeometry(幅、高さ、widthSegments、heightSegments)とし、追加した場合の任意の変化。たとえば、3番目のパラメータを "40"とし、回転状況をレンダリングしてみてください。 –