2017-06-02 6 views
0

Inceptionv3 CNNをリトレインして画像のリストを分類する際、TensorFlow for Poetsコードラボを使用しています。私は正常にモデルを訓練し、私は個々の画像を分類するために与えられたコードを採用するときに動作します。しかし、私が試して、画像の大きなバッチでそれを使用すると、私はGraphDefは2GBを超えることはできません。お知らせ下さい。Inceptionを使用して画像にラベルを付けるValueErrorを取得する:GraphDefは2GBを超えることはできません

import pandas as pd 
import os, sys 
import tensorflow as tf 
test_images = pd.read_csv('test_images.csv') 
testid = test_images['Id'] 
listx= list(range(4320)) 
predlist=[] 
output = pd.DataFrame({'Id': listx}) 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
for x in listx: 
    path = 'test/'+str(x+1)+'.jpg' 

# change this as you see fit 
    image_path = path 

# Read in the image_data 
    image_data = tf.gfile.FastGFile(image_path, 'rb').read() 

# Loads label file, strips off carriage return 
    label_lines = [line.rstrip() for line 
       in tf.gfile.GFile("retrained_labels.txt")] 

# Unpersists graph from file 
with tf.gfile.FastGFile("retrained_graph.pb", 'rb') as f: 
    graph_def = tf.GraphDef() 
    graph_def.ParseFromString(f.read()) 
    tf.import_graph_def(graph_def, name='') 

with tf.Session() as sess: 
    # Feed the image_data as input to the graph and get first prediction 
    with tf.Graph().as_default(): 
     softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') 

     predictions = sess.run(softmax_tensor, \ 
          {'DecodeJpeg/contents:0': image_data}) 

    # Sort to show labels of first prediction in order of confidence 
    top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] 
    # print('the top result is' + label_lines[node_id]) 
    flag = 0 
    for node_id in top_k: 

     while flag == 0: 
      human_string = label_lines[node_id] 
      score = predictions[0][node_id] 
      predlist.append(int(human_string[:3])) 
      print('%s' % (human_string)) 

      flag = 1 # we only want the top prediction 

出力[ '予測'] = predlist output.to_csv( 'outputtest.csv')、このエラーを解決Eことが可能な

答えて

1

一つの方法は、後

with tf.Graph().as_default(): 

を配置することによるものですforループ。 これは、一括イメージを読み込もうとしているときに私の仕事をしてくれたコードです:

for filename in os.listdir(image_path): 

     with tf.Graph().as_default(): 
     # Read in the image_data 
     image_data = tf.gfile.FastGFile(image_path + filename, 'rb').read() 
関連する問題