1
TensorFlowバックエンドを使用してKerasを使用していくつかのRNNを直列にスタックしようとしています。単一のSimpleRNN
レイヤーでモデルを作成できますが、レイヤーを2番目に追加しようとすると、適切な入力サイズがわかりません。スタック型RNNの入力形状
from keras import models
from keras.layers.recurrent import SimpleRNN
from keras.layers import Activation
model = models.Sequential()
hidden_units = 256
skeleton_dimensions = 3 * 16 # 3 dimensions for 16 joints
input_temporal_length = 7
in_shape = (input_temporal_length, skeleton_dimensions,)
# three hidden layers of 256 each
model.add(SimpleRNN(hidden_units, input_shape=in_shape,
activation='relu', use_bias=True,))
# what input shape is this supposed to have?
model.add(SimpleRNN(hidden_units, input_shape=(1, skeleton_dimensions,),
activation='relu', use_bias=True,))
私の第2のSimpleRNN
は入力形状としてどのようなものがありますか?
Recurrent Layersのドキュメントが暗示するようだ:return_sequences
考える
Output shape
- if return_sequences: 3D tensor with shape (batch_size, timesteps, units).
- else, 2D tensor with shape (batch_size, units).
が自動的にFalse
に設定されている私は、適切に次の次元のinput_shape
を設定しようとしましたが、私はエラーを取得:
Using TensorFlow backend.
Traceback (most recent call last):
File "rnn_agony.py", line 19, in <module>
activation='relu', use_bias=True,))
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 455, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python3.5/dist-packages/keras/layers/recurrent.py", line 252, in __call__
return super(Recurrent, self).__call__(inputs, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 511, in __call__
self.assert_input_compatibility(inputs)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 413, in assert_input_compatibility
str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer simple_rnn_2: expected ndim=3, found ndim=2