0
私はhereに記述されているカテゴリ生成的対立ネットワークを実装しています。カテゴリ生成的対立ネットの損失関数をどのように解釈するか?
[Jost T. Springenberg。教師なしと カテゴリ生成的敵対ネットワークとの半教師あり学習、4月2016]
これは、6ページで紹介した損失関数であるとの事で式が原因奇数であるARG_MAXを使用していることですTensorflowなどのさまざまなフレームワークで使用できるほとんどのオプティマイザは、arg_minでのみ動作します。
この式を実装する方法を教えてもらえますか?
ここに実装したコードを示します。
import tensorflow as tf
import numpy as np
import PIL.Image as Image
# constants
X_dim = 256
Y_dim = 2
Z_dim = 256 * 256
value_lambda = 1.0
X = tf.placeholder(tf.float32, shape=[None, X_dim, X_dim, 1])
Y = tf.placeholder(tf.float32, shape=[None, Y_dim])
Z = tf.placeholder(tf.float32, shape=[None, Z_dim])
initializer = tf.contrib.layers.variance_scaling_initializer
activation_function = tf.nn.elu
regularizer = tf.contrib.layers.l2_regularizer(0.5)
custom_filter = np.ones(shape=[32, 256, 256, 1], dtype=np.float)
custom_filter[:, 255, :, :] = 0
custom_filter[:, :, 255, :] = 0
custom_filter = tf.constant(custom_filter, dtype=tf.float32)
def discriminator(x, name=None):
with tf.name_scope(name, "discriminator", [x]) as scope:
D_conv_1 = tf.layers.conv2d(inputs=x, filters=16, kernel_size=[
5, 5], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [256, 256]
D_mean_pool_1 = tf.nn.pool(D_conv_1, window_shape=[
2, 2], pooling_type='AVG', padding='VALID', strides=[2, 2])
# [128, 128]
D_conv_2 = tf.layers.conv2d(D_mean_pool_1, filters=32, kernel_size=[
3, 3], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [128, 128]
D_mean_pool_2 = tf.nn.pool(D_conv_2, window_shape=[
2, 2], pooling_type='AVG', padding='VALID', strides=[2, 2])
# [64, 64]
D_conv_3 = tf.layers.conv2d(D_mean_pool_2, filters=64, kernel_size=[
3, 3], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [64, 64]
D_mean_pool_3 = tf.nn.pool(D_conv_3, window_shape=[
2, 2], pooling_type='AVG', padding='VALID', strides=[2, 2])
# [32, 32]
D_conv_4 = tf.layers.conv2d(D_mean_pool_3, filters=128, kernel_size=[
3, 3], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [32, 32]
D_mean_pool_4 = tf.nn.pool(D_conv_4, window_shape=[
2, 2], pooling_type='AVG', padding='VALID', strides=[2, 2])
# [16, 16]
D_conv_5 = tf.layers.conv2d(D_mean_pool_4, filters=256, kernel_size=[
3, 3], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [16, 16]
D_mean_pool_5 = tf.nn.pool(D_conv_5, window_shape=[
4, 4], pooling_type='AVG', padding='VALID', strides=[4, 4])
# [4, 4]
D_conv_6 = tf.layers.conv2d(D_mean_pool_5, filters=2, kernel_size=[
3, 3], padding='SAME', activation=activation_function, kernel_regularizer=regularizer)
# [4, 4]
D_mean_pool_6 = tf.nn.pool(D_conv_6, window_shape=[
4, 4], pooling_type='AVG', padding='VALID', strides=[4, 4])
# [1, 1], and finally, [batch_size][1][1][2]
D_logit = tf.reshape(D_mean_pool_6, shape=[32, 2])
# [batch_size][2]
return D_logit
'''
D_hidden_layer_1 = tf.layers.dense(
inputs=x, units=255, activation=activation_function)
D_hidden_layer_2 = tf.layers.dense(
inputs=D_hidden_layer_1, units=16, activation=activation_function)
D_logit = tf.layers.dense(inputs=D_hidden_layer_2, units=Y_dim,
activation=activation_function)
return D_logit
'''
def generator(z, name=None):
with tf.name_scope(name, "generator", [z]) as scope:
# z[32, 4096]
input = tf.reshape(z, shape=[32, 256, 256, 1])
# input[32, 64, 64, 1]
G_conv_1 = tf.layers.conv2d(input, filters=96, kernel_size=[
8, 8], padding='SAME', activation=activation_function)
# [32, 64, 64, 96]
# G_upscaled_1 = tf.image.resize_bicubic(images=G_conv_1, size=[128, 128])
# [32, 128, 128, 96]
G_conv_2 = tf.layers.conv2d(G_conv_1, filters=64, kernel_size=[
5, 5], padding='SAME', activation=activation_function)
# [32, 128, 128, 64]
# G_upscaled_2 = tf.image.resize_bicubic(G_conv_2, size=[256, 256])
# [32, 256, 256, 64]
G_conv_3 = tf.layers.conv2d(G_conv_2, filters=64, kernel_size=[
5, 5], padding='SAME', activation=activation_function)
# [32, 256, 256, 64]
G_conv_4 = tf.layers.conv2d(G_conv_3, filters=1, kernel_size=[
5, 5], padding='SAME', activation=activation_function)
# [32, 256, 256, 1]
G_logit = G_conv_4 * custom_filter
# [32, 256, 256, 1], but filtered out the last column and row
return G_logit
'''
G_hidden_layer_1 = tf.layers.dense(
inputs=z, units=255, activation=activation_function)
G_outputs = tf.layers.dense(inputs=G_hidden_layer_1, units=X_dim,
activation=activation_function)
return G_outputs
'''
with tf.name_scope("training") as scope:
# Getting samples from random data
G_sample = generator(Z)
# Getting logits
D_logit_real = discriminator(X)
D_logit_fake = discriminator(G_sample)
# Applying softmax
D_proba_real = tf.nn.softmax(logits=D_logit_real)
D_proba_real = tf.clip_by_value(
D_proba_real, clip_value_min=1e-4, clip_value_max=1.0)
D_proba_fake = tf.nn.softmax(logits=D_logit_fake)
D_proba_fake = tf.clip_by_value(
D_proba_fake, clip_value_min=1e-4, clip_value_max=1.0)
with tf.name_scope("category_1") as sub_scope:
# Getting Shannon's entrophy in X's distribution
D_log_real = tf.log(D_proba_real)
D_entrophy_real = D_proba_real * D_log_real
D_mean_real = tf.reduce_sum(D_entrophy_real, axis=1)
D_mean_real = -D_mean_real
D_entrophy_real_mean = tf.reduce_mean(D_mean_real, axis=0)
D_entrophy_real_mean = tf.reshape(D_entrophy_real_mean, shape=[1])
with tf.name_scope("category_2") as sub_scope:
# Gettning Shannon's entrophy in Z's distribution
G_log_fake = tf.log(D_proba_fake)
G_entrophy_fake = D_proba_fake * G_log_fake
G_mean = tf.reduce_sum(G_entrophy_fake, axis=1)
G_mean = -G_mean
G_entrophy_fake_mean = tf.reduce_mean(G_mean, axis=0)
G_entrophy_fake_mean = tf.reshape(G_entrophy_fake_mean, shape=[1])
with tf.name_scope("category_3") as sub_scope:
# Getting Shannon's entrophy between classes
D_class_mean = tf.reduce_mean(D_proba_real, axis=0, keep_dims=True)
D_class_mean_log = tf.log(D_class_mean)
D_class_entropy = D_class_mean * D_class_mean_log
D_class = tf.reduce_sum(D_class_entropy, axis=1)
D_class = -D_class
D_class = tf.reshape(D_class, shape=[1])
G_class_mean = tf.reduce_mean(D_proba_fake, axis=0, keep_dims=True)
G_class_mean_log = tf.log(G_class_mean)
G_class_entrophy = G_class_mean * G_class_mean_log
G_class = tf.reduce_sum(G_class_entrophy, axis=1)
G_class = -G_class
G_class = tf.reshape(G_class, shape=[1])
with tf.name_scope("supervised") as sub_scope:
# Getting cross entrophy for labeled data
D_labeled = Y * D_log_real
D_cross_entrophy = tf.reduce_sum(D_labeled, axis=1)
D_cross_entrophy = -D_cross_entrophy
D_supervised = tf.reduce_mean(D_cross_entrophy, axis=0)
D_supervised_weighted = value_lambda * D_supervised
D_supervised_weighted = tf.reshape(D_supervised_weighted, shape=[1])
D_loss = D_class - D_entrophy_real_mean + \
G_entrophy_fake_mean + D_supervised_weighted
G_loss = -G_class + G_entrophy_fake_mean
D_loss = -D_loss
D_solver = tf.train.AdamOptimizer().minimize(D_loss)
G_solver = tf.train.AdamOptimizer().minimize(G_loss)
# with tf.name_scope("testing") as scope:
何を試しましたか?いくつかのコードを見てみましょう。 – Alex
@Alexコードを追加しました! – user3551261
これはたくさんのコード@ user3551261です。何が役に立つのかは、最小コードセットと期待される出力です。私はあなたが必要とするのは2行か3行のコードと2行か3行の出力例だと思う。実際にarg_minの代わりにarg_maxを求めているなら、非常に短い例がはるかに役立つでしょう。私は助けたいと思いますが、あなたが投稿した上記のコードをすべて実行する見込みは、手伝いを始めるのが難しいことです。 – Wontonimo