これはあなたにいくつかを取得する必要がありますスピードアップ。
def Pearson(r, n=len(dat)):
r = max(min(r, 1.0), -1.0)
df = n - 2
if abs(r) == 1.0:
prob = 0.0
else:
t_squared = r**2 * (df/((1.0 - r) * (1.0 + r)))
prob = betai(0.5*df, 0.5, df/(df+t_squared))
return (r,prob)
使用applymap
dat.corr
に要素単位の操作を行います。プライマーのリンク内のドキュメントから変更機能Pearson
を定義します。
np.random.seed(10)
dat = pd.DataFrame(np.random.randn(5, 5))
dat[0] = np.arange(5) # seed two correlated cols
dat[1] = np.arange(5) # ^^^
dat.corr().applymap(Pearson)
0 1 2 3 4
0 (1.0, 0.0) (1.0, 0.0) (0.713010395675, 0.176397305541) (0.971681374885, 0.00569624513678) (0.0188249871501, 0.97603269768)
1 (1.0, 0.0) (1.0, 0.0) (0.713010395675, 0.176397305541) (0.971681374885, 0.00569624513678) (0.0188249871501, 0.97603269768)
2 (0.713010395675, 0.176397305541) (0.713010395675, 0.176397305541) (1.0, 0.0) (0.549623945218, 0.337230071385) (-0.280514871109, 0.647578381153)
3 (0.971681374885, 0.00569624513678) (0.971681374885, 0.00569624513678) (0.549623945218, 0.337230071385) (1.0, 0.0) (0.176622737448, 0.77629170593)
4 (0.0188249871501, 0.97603269768) (0.0188249871501, 0.97603269768) (-0.280514871109, 0.647578381153) (0.176622737448, 0.77629170593) (1.0, 0.0)
あなたはdat
が大きい場合、この方法でスピードアップ見ていますが、それがあるため、要素ごとの操作でまだかなり遅いです:あなたはPearson
に相関係数r
を渡しています。
np.random.seed(10)
dat = pd.DataFrame(np.random.randn(100, 100))
%%timeit
dat.corr().applymap(Pearson)
10 loops, best of 3: 118 ms per loop
%%timeit
stats = dict()
for l in combinations(dat.index.tolist(),2):
stats[l] = pearsonr(dat.loc[l[0],:], dat.loc[l[1],:])
1 loops, best of 3: 1.56 s per loop
あなたは[ 'pearsonr'](https://github.com/scipy/scipy/blob/v0.16.1/scipy/stats/stats.py#L2514)のソースを見ると、あなたが見つけます相関係数がある場合は、p値を計算するコードがほんの数行必要です。 '.apply(function)'で使うことができる 'function'を作るのは非常に難しいことではありません。 – Primer
あなたのタイトルをより具体的なものに変更することを検討してください:) –