はい、これはNumbaが実際に働く問題の種類です。 dk
の値を変更したのは、簡単なデモンストレーションでは賢明ではなかったからです。ここでは、コードは次のとおりです。
import numpy as np
import numba as nb
def f_big(A, k, std_A, std_k, mean_A=10, mean_k=0.2, hh=100):
return (1/(std_A * std_k * 2 * np.pi)) * A * (hh/50) ** k * np.exp(-1*(k - mean_k)**2/(2 * std_k **2) - (A - mean_A)**2/(2 * std_A**2))
def func():
outer_sum = 0
dk = 0.01 #0.000001
for k in np.arange(dk, 0.4, dk):
inner_sum = 0
for A in np.arange(dk, 20, dk):
inner_sum += dk * f_big(A, k, 1e-5, 1e-5)
outer_sum += inner_sum * dk
return outer_sum
@nb.jit(nopython=True)
def f_big_nb(A, k, std_A, std_k, mean_A=10, mean_k=0.2, hh=100):
return (1/(std_A * std_k * 2 * np.pi)) * A * (hh/50) ** k * np.exp(-1*(k - mean_k)**2/(2 * std_k **2) - (A - mean_A)**2/(2 * std_A**2))
@nb.jit(nopython=True)
def func_nb():
outer_sum = 0
dk = 0.01 #0.000001
X = np.arange(dk, 0.4, dk)
Y = np.arange(dk, 20, dk)
for i in xrange(X.shape[0]):
k = X[i] # faster to do lookup than iterate over an array directly
inner_sum = 0
for j in xrange(Y.shape[0]):
A = Y[j]
inner_sum += dk * f_big_nb(A, k, 1e-5, 1e-5)
outer_sum += inner_sum * dk
return outer_sum
そしてタイミング:
In [7]: np.allclose(func(), func_nb())
Out[7]: True
In [8]: %timeit func()
1 loops, best of 3: 222 ms per loop
In [9]: %timeit func_nb()
The slowest run took 419.10 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 362 µs per loop
のでnumbaバージョンが600倍高速私のラップトップ上の約です。
たぶんニッキーニクですが、 '' @ nb.jit(nopython = True) ''を使う代わりに、 '' n nb:njit''を '' nopython = True''なしで使うことができます。 – MSeifert
@MSeifert私は頻繁にそれをパラメータ化するので、私は簡単にテスト中に前後に切り替えることができますので、私は習慣でこのフォームを使用する傾向があります – JoshAdel