3
私はTensorflowで特定の製品品質が良いか悪いかを予測するサンプルを作成しました。コードの私の最後のセクションには、次のようになります。Tensorflowで予測を印刷するには
# Merge summaries for TensorBoard
merged_summaries = tf.summary.merge_all()
with tf.Session() as sess:
log_directory = create_log_directory()
summary_writer = tf.summary.FileWriter(log_directory, sess.graph)
tf.global_variables_initializer().run()
for i in range(epochs):
average_cost = 0
number_of_batches = int(len(X_train)/batch_size)
for start, end in zip(range(0, len(X_train), batch_size), range(batch_size, len(X_train), batch_size)):
feed = {X: X_train[start:end], y: y_train[start:end]}
sess.run(training_step, feed_dict=feed)
# Compute average loss
average_cost += sess.run(cost, feed_dict=feed)/number_of_batches
if i % epochs_to_print == 0:
feed = {X: X_test, y: y_test}
result = sess.run([merged_summaries, accuracy], feed_dict=feed)
summary = result[0]
current_accuracy = result[1]
summary_writer.add_summary(summary, i)
print("Epoch: {:4d}, average cost = {:.3f}, accuracy = {:.3f}".format(i+1, average_cost, current_accuracy))
print("Final accuracy = {:.3f}".format(sess.run(accuracy, feed_dict={X: X_test, y: y_test})))
それは私が52.7パーセントの精度であることを前提と0.527の精度で実施トップ10のエポックの素敵なセットを出します。
Saving summaries to tmp/logs/run_32/
Epoch: 1, average cost = 3.300, accuracy = 0.174
Epoch: 101, average cost = 0.685, accuracy = 0.528
Epoch: 201, average cost = 0.682, accuracy = 0.527
Epoch: 301, average cost = 0.680, accuracy = 0.527
Epoch: 401, average cost = 0.680, accuracy = 0.527
Epoch: 501, average cost = 0.679, accuracy = 0.527
Epoch: 601, average cost = 0.679, accuracy = 0.527
Epoch: 701, average cost = 0.679, accuracy = 0.527
Epoch: 801, average cost = 0.679, accuracy = 0.527
Epoch: 901, average cost = 0.679, accuracy = 0.527
Final accuracy = 0.527
問題は今、私は予測を得るために(おそらく)からのデータのわずか1行にTensorflowにnumpyのアレイをフィードバックすることです。これはどうすればいいですか?
input =[1.939501945438227,-1.8459679631200792,1.9134581818982566,-0.6741964131111666,-0.5720868389043996,0.3926397708073837,-2.0777995164924112,0.03405362776450469,0.33621509508483066]
output = <<some function call here>>
print(output)