raw_rnn
を使用してエンコーダlstmを実装するための私の現在のコードです。この質問は私が以前に尋ねた別の質問(Tensorflow raw_rnn retrieve tensor of shape BATCH x DIM from embedding matrix)にも関連しています。 私は、次のコードを実行すると、私は次のエラーを取得する:Tensorflow。 ValueError:2つの構造に同じ数の要素がありません
ValueError: The two structures don't have the same number of elements.
First structure (1 elements): None
Second structure (2 elements): LSTMStateTuple(c=64, h=64)
エラーがライン上でoccures:encoder_outputs_ta, encoder_final_state, _ = tf.nn.raw_rnn(cell, loop_fn=reader_loop)
import tensorflow as tf
import numpy as np
batch_size, max_time, input_embedding_size = 5, 10, 16
vocab_size, num_units = 50, 64
encoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs')
encoder_inputs_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_inputs_length')
embeddings = tf.Variable(tf.random_uniform([vocab_size + 2, input_embedding_size], -1.0, 1.0),
dtype=tf.float32, name='embeddings')
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs)
cell = tf.contrib.rnn.LSTMCell(num_units)
W = tf.Variable(tf.random_uniform([num_units, vocab_size], -1, 1), dtype=tf.float32, name='W_reader')
b = tf.Variable(tf.zeros([vocab_size]), dtype=tf.float32, name='b_reader')
with tf.variable_scope('ReaderNetwork'):
def loop_fn_initial():
init_elements_finished = (0 >= encoder_inputs_length)
init_input = cell.zero_state(batch_size, dtype=tf.float32)
init_cell_state = None
init_cell_output = None
init_loop_state = None
return (init_elements_finished, init_input,
init_cell_state, init_cell_output, init_loop_state)
def loop_fn_transition(time, previous_output, previous_state, previous_loop_state):
def get_next_input():
return tf.ones([batch_size, input_embedding_size], dtype=tf.float32) # TODO replace with value from embeddings
elements_finished = (time >= encoder_inputs_length)
finished = tf.reduce_all(elements_finished) # boolean scalar
next_input = tf.cond(finished,
true_fn=lambda: tf.zeros([batch_size, input_embedding_size], dtype=tf.float32),
false_fn=get_next_input)
state = previous_state
output = previous_output
loop_state = None
return elements_finished, next_input, state, output, loop_state
def loop_fn(time, previous_output, previous_state, previous_loop_state):
if previous_state is None: # time = 0
return loop_fn_initial()
return loop_fn_transition(time, previous_output, previous_state, previous_loop_state)
reader_loop = loop_fn
encoder_outputs_ta, encoder_final_state, _ = tf.nn.raw_rnn(cell, loop_fn=reader_loop)
outputs = encoder_outputs_ta.stack()
def next_batch():
return {
encoder_inputs: np.random.random((batch_size, max_time)),
encoder_inputs_length: [max_time] * batch_size
}
init = tf.global_variables_initializer()
with tf.Session() as s:
s.run(init)
outs = s.run([outputs], feed_dict=next_batch())
print len(outs), outs[0].shape