2011-10-23 13 views
9

私はCohen、Cohen、Aiken and West(2003)の「行動科学の応用重回帰相関分析」の本を読んでいます。 p。259)。グラフは、Rを使って作成されたように見えます。私はグラフを教材として好きであり、それらを再現したいと思います。プロットは次のようになります。 enter image description hereプロット回帰面

Coehn et al。プロットは、平均で+ 1sd、x2で= 1sdの飛行機を横切る線であった。可能であれば、これは非常に優れたものになります(一般にRで可能なことはほとんどありません)

私は、以下のサンプルデータセットをIV、2つの予測子と中心の予測子で提供しました。 Rを使用して、相互作用を示す回帰面(平面)プロットを生成し、中心化されたデータと非中心化されたデータの両方の加法モデルを生成するにはどうすればよいでしょうか(技術は同じですが、 4つのプロットの

合計: 1.何の相互作用 2.非中心の相互作用を非中心ない 3.何の相互作用 4.中心に相互作用

DF<-structure(list(y = c(-1.22, -1.73, -2.64, -2.44, -1.11, 2.24, 
3.42, 0.67, 0.59, -0.61, -10.77, 0.93, -8.6, -6.99, -0.12, -2.29, 
-5.16, -3.35, -3.35, -2.51, 2.21, -1.18, -5.21, -7.74, -1.34), 
    x1 = c(39.5, 41, 34, 30.5, 31.5, 30, 41.5, 24, 43, 39, 25.5, 
    38.5, 33.5, 30, 41, 31, 25, 37, 37.5, 24.5, 38, 37, 41, 37, 
    36), x2 = c(61L, 53L, 53L, 44L, 49L, 44L, 57L, 47L, 54L, 
    48L, 46L, 59L, 46L, 61L, 55L, 57L, 59L, 59L, 55L, 50L, 62L, 
    55L, 55L, 52L, 55L), centered.x1 = c(5.49702380952381, 6.99702380952381, 
    -0.0029761904761898, -3.50297619047619, -2.50297619047619, 
    -4.00297619047619, 7.49702380952381, -10.0029761904762, 8.99702380952381, 
    4.99702380952381, -8.50297619047619, 4.49702380952381, -0.50297619047619, 
    -4.00297619047619, 6.99702380952381, -3.00297619047619, -9.00297619047619, 
    2.99702380952381, 3.49702380952381, -9.50297619047619, 3.99702380952381, 
    2.99702380952381, 6.99702380952381, 2.99702380952381, 1.99702380952381 
    ), centered.x2 = c(9.80357142857143, 1.80357142857143, 1.80357142857143, 
    -7.19642857142857, -2.19642857142857, -7.19642857142857, 
    5.80357142857143, -4.19642857142857, 2.80357142857143, -3.19642857142857, 
    -5.19642857142857, 7.80357142857143, -5.19642857142857, 9.80357142857143, 
    3.80357142857143, 5.80357142857143, 7.80357142857143, 7.80357142857143, 
    3.80357142857143, -1.19642857142857, 10.8035714285714, 3.80357142857143, 
    3.80357142857143, 0.803571428571431, 3.80357142857143)), .Names = c("y", 
"x1", "x2", "centered.x1", "centered.x2"), row.names = c(NA, 
25L), class = "data.frame") 

を中心としません事前にありがとうございます。

編集:次のコードはプレーンをプロットしますが、インタラクションがあるときには機能しません(これは本当に興味があります)。さらに、高(+ 1sd)、低(-1sd)、x2の平均のいずれのプロットもわかりません。

x11(10,5) 
s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE, 
     angle=70, scale.y=1, pch=16, main="scatterplot3d") 

    # Now adding a regression plane to the "scatterplot3d" 
    my.lm <- with(DF, lm(y ~ x1 + x2)) 
s3d$plane3d(my.lm, lty.box = "solid") 

(ここで見られる)の相互作用面をプロットするための試み:

s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE, 
     angle=70, scale.y=1, pch=16, main="scatterplot3d") 

    my.lm <- with(DF, lm(y ~ x1 + x2 + x1:x2)) 
s3d$plane3d(my.lm, lty.box = "solid") 

は、次のエラーをもたらした:

Error in segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty = ltya, : 
    cannot mix zero-length and non-zero-length coordinates 
+0

... –

答えて

13

は、ここで色のビットを追加する(私はそれを行うだろうかです)パッケージ 'rms'と 'lattice':

require(rms) # also need to have Hmisc installed 
require(lattice) 
ddI <- datadist(DF) 
options(datadist="ddI") 
lininterp <- ols(y ~ x1*x2, data=DF) 
bplot(Predict(lininterp, x1=25:40, x2=45:60), 
     lfun=wireframe, # bplot passes extra arguments to wireframe 
     screen = list(z = -10, x = -50), drape=TRUE) 

enter image description here

と非相互作用モデル:私はこのような何かを行うRコマンダーで何かがあるかもしれないと思う

bplot(Predict(lin.no.int, x1=25:40, x2=45:60), lfun=wireframe, col=2:8, drape=TRUE, 
screen = list(z = -10, x = -50), 
main="Estimated regression surface with no interaction") 

enter image description here

関連する問題