2016-09-27 12 views
0

私は、ガアシアンカーネル密度推定値に最も寄与する値と最小値を求めることを試みています。私はこれらを見つけるための関数を書いたが、私はそれを実行すると最大値の複数の値を得ている。私はこれが有効数字の数に関係していると思ったので、それらを増やしましたが、何も変わりませんでした。複数の最小値がR

誰かが洞察力を提供できますか?

#Create a vector with Brainsize-Small Litter Size Data: 
Y_i<-c(0.42, 0.86, 0.88, 1.11, 1.34, 1.38, 1.42, 1.47, 1.63,1.73, 2.17, 2.42, 2.48, 2.74, 2.74, 2.79, 2.90, 3.12,3.18, 3.27, 3.30, 3.61, 3.63, 4.13, 4.40, 5.00, 5.20,5.59, 7.04, 7.15, 7.25, 7.75, 8.00, 8.84, 9.30, 9.68,10.32, 10.41, 10.48, 11.29, 12.30, 12.53, 12.69, 14.14, 14.15,14.27, 14.56, 15.84, 18.55, 19.73, 20.00) 

#Create a kernel density estimator function: 
kern<-function(data=0,effOf=0,bw=0){ 
z<-rep(0,length(data)) 
k<-rep(0,length(data)) 

for(i in data){ 
z[i]=((effOf-data[i])/bw) 
} 

for(j in z){ 
k[j]=(1/sqrt(2*pi))*exp(-(z[j]^2/2))/(length(data)*bw) 
} 

min=min(k) 
imin=which(k==min) 
ymin=data[imin] 

max=max(k) 
imax=which(k==max) 
ymax=data[imax] 

print(paste("The minimum contributor is value",ymin)) 
print(paste("The maximum contributor is value",ymax)) 

estimate=sum(k) 
return(estimate) 
} 

#(a.)Use KDE function to estimate f(16) 
kern(Y_i,16,3) 

これは出力 - 私が唯一の最大値が欲しいことに注意してくださいです:

[1] "The minimum contributor is value 0.42" "The minimum contributor is value 0.86" 
[3] "The minimum contributor is value 0.88" "The minimum contributor is value 1.38" 
[5] "The minimum contributor is value 1.42" "The minimum contributor is value 1.47" 
[7] "The minimum contributor is value 1.63" "The minimum contributor is value 1.73" 
[9] "The minimum contributor is value 2.17" "The minimum contributor is value 2.42" 
[11] "The minimum contributor is value 2.48" "The minimum contributor is value 2.74" 
[13] "The minimum contributor is value 2.74" "The minimum contributor is value 2.79" 
[15] "The minimum contributor is value 2.9" "The minimum contributor is value 3.12" 
[17] "The minimum contributor is value 3.18" "The minimum contributor is value 3.27" 
[19] "The minimum contributor is value 3.3" "The minimum contributor is value 3.61" 
[21] "The minimum contributor is value 3.63" "The minimum contributor is value 4.13" 
[23] "The minimum contributor is value 4.4" "The minimum contributor is value 5"  
[25] "The minimum contributor is value 5.2" "The minimum contributor is value 5.59" 
[27] "The minimum contributor is value 7.04" "The minimum contributor is value 7.15" 
[29] "The minimum contributor is value 7.25" "The minimum contributor is value 7.75" 
[31] "The minimum contributor is value 8"  "The minimum contributor is value 8.84" 
[33] "The minimum contributor is value 9.3" "The minimum contributor is value 9.68" 
[35] "The minimum contributor is value 10.32" "The minimum contributor is value 10.41" 
[37] "The minimum contributor is value 10.48" "The minimum contributor is value 11.29" 
[39] "The minimum contributor is value 12.3" "The minimum contributor is value 12.53" 
[41] "The minimum contributor is value 12.69" "The minimum contributor is value 14.14" 
[43] "The minimum contributor is value 14.15" "The minimum contributor is value 14.27" 
[45] "The minimum contributor is value 14.56" "The minimum contributor is value 15.84" 
[47] "The minimum contributor is value 18.55" "The minimum contributor is value 19.73" 
[49] "The minimum contributor is value 20" 
[1] "The maximum contributor is value 1.34" 
[1] 2.868016e-08 
+0

この 'kern <-function(data = 0、effOf = 0、bw = 0)'とはどういう意味ですか? – user2100721

+2

'k'のほとんどの値はゼロになりますので、minのためのたくさんの結びつきがあります。 – joran

答えて

1

私は正しいコードがために2点の修正、インデックスを(次のようにすべきだと思いますループが間違ってz値とカーネル値が間違っていた):

kern<-function(data=0,effOf=0,bw=0){ 

    z<-rep(0,length(data)) 
    k<-rep(0,length(data)) 

    for(i in 1:length(data)){ # iterate through all data points 
    z[i]=((effOf-data[i])/bw) 
    } 

    for(j in 1:length(z)){ # iterate through all z values 
    k[j]=(1/sqrt(2*pi))*exp(-(z[j]^2/2))/(length(data)*bw) 
    } 

    min=min(k) 
    imin=which(k==min) 
    ymin=data[imin] 

    max=max(k) 
    imax=which(k==max) 
    ymax=data[imax] 

    print(paste("The minimum contributor is value",ymin)) 
    print(paste("The maximum contributor is value",ymax)) 

    estimate=sum(k) 
    return(estimate) 
} 

#(a.)Use KDE function to estimate f(16) 
kern(Y_i,16,3) 

[1] "The minimum contributor is value 0.42" 
[1] "The maximum contributor is value 15.84" 
[1] 0.02254657 
+0

ああ。どうもありがとうございます。インデックス化する要素の先頭と最後を指定する必要があることを完全に忘れてしまった。 – AwfulPersimmon

関連する問題