org.apache.spark.ml.classification.LogisticRegression
を拡張して新しいクラスを作成し、ソースコードを変更せずにそれぞれのメソッドをオーバーライドする必要があります。新しいCustomLogisticRegression
クラスとロジスティック回帰を実行
class CustomLogisticRegression
extends
LogisticRegression {
override def toString(): String = "This is overridden Logistic Regression Class"
}
val data = sqlCtx.createDataFrame(MLUtils.loadLibSVMFile(sc, "/opt/spark/spark-1.5.2-bin-hadoop2.6/data/mllib/sample_libsvm_data.txt"))
val customLR = new CustomLogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
val customLRModel = customLR.fit(data)
val originalLR = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
val originalLRModel = originalLR.fit(data)
// Print the intercept for logistic regression
println(s"Custom Class's Intercept: ${customLRModel.intercept}")
println(s"Original Class's Intercept: ${originalLRModel.intercept}")
println(customLR.toString())
println(originalLR.toString())
出力:
Custom Class's Intercept: 0.22456315961250317
Original Class's Intercept: 0.22456315961250317
This is overridden Logistic Regression Class
logreg_1cd811a145d7
はどうもありがとう、これは本当に便利です! –